predictOffAxis {BIGL} | R Documentation |
Compute off-axis predictions
Description
Given a dataframe with dose-response data, this function uses coefficient estimates from the marginal (on-axis) monotherapy model to compute the expected values of response at off-axis dose combinations using a provided null model.
Usage
predictOffAxis(
doseGrid,
fitResult,
transforms = fitResult$transforms,
null_model = c("loewe", "hsa", "bliss", "loewe2"),
fit = NULL,
...
)
Arguments
doseGrid |
A dose grid with unique combination of doses |
fitResult |
Monotherapy (on-axis) model fit, e.g. produced by
|
transforms |
Transformation functions. If non-null, |
null_model |
Specified null model for the expected response surface.
Currently, allowed options are |
fit |
a pre-calculated off-axis fit |
... |
Further arguments passed on to the Loewe fitters |
Value
This functions returns a named vector with predicted off-axis points
Examples
data <- subset(directAntivirals, experiment == 1)
## Data must contain d1, d2 and effect columns
transforms <- getTransformations(data)
fitResult <- fitMarginals(data, transforms)
uniqueDoses <- with(data, list("d1" = sort(unique(data$d1)),
"d2" = sort(unique(data$d2))))
doseGrid <- expand.grid(uniqueDoses)
predictOffAxis(fitResult, null_model = "hsa", doseGrid = doseGrid)