postmixprob {BHMSMAfMRI} | R Documentation |
Obtain estimates of the mixture probabilities defining the BHMSMA posterior wavelet coefficients distributions
Description
postmixprob
computes the mixture probabilities (piklj.bar), which define the marginal posterior distribution of the wavelet coefficients of the BHMSMA model, using Newton Cotes algorithm for each subject based on multi-subject or single subject analyses, and returns the same (see References).
Usage
postmixprob(n, grid, waveletcoefmat, hyperparam, analysis)
Arguments
n |
Number of subjects. |
grid |
The number of voxels in one row (or, one column) of the brain slice of interest. Must be a power of 2. The total number of voxels is |
waveletcoefmat |
A matrix of dimension |
hyperparam |
A vector containing the estimates of the six hyperparameters. |
analysis |
"MSA" or "SSA", depending on whether performing multi-subject analysis or single subject analysis. |
Value
A list containing the following.
pkljbar |
A matrix of dimension |
Author(s)
Nilotpal Sanyal, Marco Ferreira
Maintainer: Nilotpal Sanyal <nilotpal.sanyal@gmail.com>
References
Sanyal, Nilotpal, and Ferreira, Marco A.R. (2012). Bayesian hierarchical multi-subject multiscale analysis of functional MRI data. Neuroimage, 63, 3, 1519-1531.
See Also
waveletcoef
, hyperparamest
, postwaveletcoef
Examples
set.seed(1)
n <- 3
grid <- 8
waveletcoefmat <- matrix(nrow=n,ncol=grid^2-1)
for(i in 1:n) waveletcoefmat[i,] <- rnorm(grid^2-1)
hyperparam <- rep(.1,6)
analysis <- "multi"
pkljbar <- postmixprob(n,grid,waveletcoefmat,hyperparam,
analysis)
dim(pkljbar$pkljbar)
#[1] 3 63