postglmcoef {BHMSMAfMRI} | R Documentation |
Obtain posterior estimate of a 2D GLM coefficients map of a regressor
Description
postglmcoef
computes posterior mean (or median) of a 2D GLM coefficients map (e.g., corresponding to a single brain slice) of a regressor using the posterior mean (or median) of the corresponding wavelet coefficients in the inverse discrete wavelet transform for each subject based on multi-subject or single subject analyses (see References).
Usage
postglmcoef(n, grid, glmcoefstd, postmeanwaveletcoef,
wave.family="DaubLeAsymm", filter.number=6, bc="periodic")
Arguments
n |
Number of subjects. |
grid |
The number of voxels in one row (or, one column) of the brain slice of interest. Must be a power of 2. The total number of voxels is |
glmcoefstd |
An array of dimension |
postmeanwaveletcoef |
A matrix of size |
wave.family |
The family of wavelets to use - "DaubExPhase" or "DaubLeAsymm". Default is "DaubLeAsymm". |
filter.number |
The number of vanishing moments of the wavelet. Default is 6. |
bc |
The boundary condition to use - "periodic" or "symmetric". Default is "periodic". |
Details
The wavelet transformation and reconstruction are performed by using the functions imwd
and imwr
, respectively.
Value
A list containing the following.
GLMcoefposterior |
An array of dimension |
Author(s)
Nilotpal Sanyal, Marco Ferreira
Maintainer: Nilotpal Sanyal <nilotpal.sanyal@gmail.com>
See Also
glmcoef
, postwaveletcoef
, substituteWaveletCoef
, imwr
, postgroupglmcoef
, postsamples
Examples
set.seed(1)
n <- 3
grid <- 8
glmcoefstd <- array(rnorm(n*grid*grid),
dim=c(n,grid,grid))
postmeanwaveletcoef <- array(rnorm(n*(grid^2-1)),
dim=c(n,(grid^2-1)))
postmeanglmcoef <- postglmcoef(n,grid,glmcoefstd,
postmeanwaveletcoef)
dim(postmeanglmcoef$GLMcoefposterior)
#[1] 3 8 8