fitComponentModel {BGmisc} | R Documentation |
fitComponentModel Fit the estimated variance components of a model to covariance data
Description
fitComponentModel Fit the estimated variance components of a model to covariance data
Usage
fitComponentModel(covmat, ...)
Arguments
covmat |
The covariance matrix of the raw data, which may be blockwise. |
... |
Comma-separated relatedness component matrices representing the variance components of the model. |
Details
This function fits the estimated variance components of a model to given covariance data. The rank of the component matrices is checked to ensure that the variance components are all identified. Warnings are issued if there are inconsistencies.
Value
A regression (linear model fitted with lm
). The coefficients of the regression represent the estimated variance components.
Examples
## Not run:
# install.packages("OpenMX")
data(twinData, package = "OpenMx")
sellVars <- c("ht1", "ht2")
mzData <- subset(twinData, zyg %in% c(1), c(selVars, "zyg"))
dzData <- subset(twinData, zyg %in% c(3), c(selVars, "zyg"))
fitComponentModel(
covmat = list(cov(mzData[, selVars], use = "pair"), cov(dzData[, selVars], use = "pair")),
A = list(matrix(1, nrow = 2, ncol = 2), matrix(c(1, 0.5, 0.5, 1), nrow = 2, ncol = 2)),
C = list(matrix(1, nrow = 2, ncol = 2), matrix(1, nrow = 2, ncol = 2)),
E = list(diag(1, nrow = 2), diag(1, nrow = 2))
)
## End(Not run)
[Package BGmisc version 1.3.2 Index]