roll_your_own {BGGM}R Documentation

Compute Custom Network Statistics

Description

This function allows for computing custom network statistics for weighted adjacency matrices (partial correlations). The statistics are computed for each of the sampled matrices, resulting in a distribution.

Usage

roll_your_own(
  object,
  FUN,
  iter = NULL,
  select = FALSE,
  cred = 0.95,
  progress = TRUE,
  ...
)

Arguments

object

An object of class estimate.

FUN

A custom function for computing the statistic. The first argument must be a partial correlation matrix.

iter

Number of iterations (posterior samples; defaults to the number in the object).

select

Logical. Should the graph be selected ? The default is currently FALSE.

cred

Numeric. Credible interval between 0 and 1 (default is 0.95) that is used for selecting the graph.

progress

Logical. Should a progress bar be included (defaults to TRUE) ?

...

Arguments passed to the function.

Details

The user has complete control of this function. Hence, care must be taken as to what FUN returns and in what format. The function should return a single number (one for the entire GGM) or a vector (one for each node). This ensures that the print and plot.roll_your_own will work.

When select = TRUE, the graph is selected and then the network statistics are computed based on the weigthed adjacency matrix. This is accomplished internally by multiplying each of the sampled partial correlation matrices by the adjacency matrix.

Value

An object defined by FUN.

Examples


####################################
###### example 1: assortment #######
####################################
# assortment
library(assortnet)

Y <- BGGM::bfi[,1:10]
membership <- c(rep("a", 5), rep("c", 5))

# fit model
fit <- estimate(Y = Y, iter = 250,
                progress = FALSE)

# membership
membership <- c(rep("a", 5), rep("c", 5))

# define function
f <- function(x,...){
 assortment.discrete(x, ...)$r
}


net_stat <- roll_your_own(object = fit,
                          FUN = f,
                          types = membership,
                          weighted = TRUE,
                          SE = FALSE, M = 1,
                          progress = FALSE)

# print
net_stat


############################################
###### example 2: expected influence #######
############################################
# expected influence from this package
library(networktools)

# data
Y <- depression

# fit model
fit <- estimate(Y = Y, iter = 250)

# define function
f <- function(x,...){
     expectedInf(x,...)$step1
}

# compute
net_stat <- roll_your_own(object = fit,
                          FUN = f,
                          progress = FALSE)

#######################################
### example 3: mixed data & bridge ####
#######################################
# bridge from this package
library(networktools)

# data
Y <- ptsd[,1:7]

fit <- estimate(Y,
                type = "mixed",
                iter = 250)

# clusters
communities <- substring(colnames(Y), 1, 1)

# function is slow
f <- function(x, ...){
 bridge(x, ...)$`Bridge Strength`
}

net_stat <- roll_your_own(fit,
                          FUN = f,
                          select = TRUE,
                          communities = communities,
                          progress = FALSE)




[Package BGGM version 2.1.3 Index]