tr.power.prior {BAS} | R Documentation |
Truncated Power Prior Distribution for Models
Description
Creates an object representing the prior distribution on models for BAS using a truncated Distribution on the Model Size where the probability of gamma = p^-kappa |gamma| where gamma is the vector of model indicators
Usage
tr.power.prior(kappa = 2, trunc)
Arguments
kappa |
parameter in the prior distribution that controls sparsity |
trunc |
parameter that determines truncation in the distribution i.e. P(gamma; alpha, beta, trunc) = 0 if |gamma| > trunc. |
Details
The beta-binomial distribution on model size is obtained by assigning each variable inclusion indicator independent Bernoulli distributions with probability w, and then giving w a beta(alpha,beta) distribution. Marginalizing over w leads to the number of included predictors having a beta-binomial distribution. The default hyperparameters lead to a uniform distribution over model size. The Truncated version assigns zero probability to all models of size > trunc.
Value
returns an object of class "prior", with the family and hyperparameters.
Author(s)
Merlise Clyde
See Also
Other priors modelpriors:
Bernoulli.heredity()
,
Bernoulli()
,
beta.binomial()
,
tr.beta.binomial()
,
tr.poisson()
,
uniform()
Examples
tr.power.prior(2, 8)
library(MASS)
data(UScrime)
UScrime[, -2] <- log(UScrime[, -2])
crime.bic <- bas.lm(y ~ .,
data = UScrime, n.models = 2^15, prior = "BIC",
modelprior = tr.power.prior(2, 8),
initprobs = "eplogp"
)