EB.global {BAS} | R Documentation |
Find the global Empirical Bayes estimates for BMA
Description
Finds the global Empirical Bayes estimates of g in Zellner's g-prior and model probabilities
Usage
EB.global(object, tol = 0.1, g.0 = NULL, max.iterations = 100)
Arguments
object |
A 'bas' object created by |
tol |
tolerance for estimating g |
g.0 |
initial value for g |
max.iterations |
Maximum number of iterations for the EM algorithm |
Details
Uses the EM algorithm in Liang et al to estimate the type II MLE of g in Zellner's g prior
Value
An object of class 'bas' using Zellner's g prior with an estimate of g based on all models
Author(s)
Merlise Clyde clyde@stat.duke.edu
References
Liang, F., Paulo, R., Molina, G., Clyde, M. and Berger, J.O.
(2008) Mixtures of g-priors for Bayesian Variable Selection. Journal of the
American Statistical Association. 103:410-423.
doi:10.1198/016214507000001337
See Also
Examples
library(MASS)
data(UScrime)
UScrime[,-2] = log(UScrime[,-2])
# EB local uses a different g within each model
crime.EBL = bas.lm(y ~ ., data=UScrime, n.models=2^15,
prior="EB-local", initprobs= "eplogp")
# use a common (global) estimate of g
crime.EBG = EB.global(crime.EBL)
[Package BAS version 1.7.1 Index]