twodviews {Arothron} | R Documentation |
twodviews Combine and calculate the PCscores matrix from a list of different landmark configurations to be combined
twodviews(twodlist, scale = TRUE, vector = NULL)
twodlist |
a list containing the landmark configurations of each anatomical view stored as separated lists |
scale |
logical: TRUE for shape-space, FALSE for form-space |
vector |
numeric vector: defines which views are to be used |
PCscores PC scores
PCs Pricipal Components (eigenvector matrix)
Variance table of the explained variance by the PCs
size vector containing the Centroid Size of each configuration
mshapes a list containing the mean shape of each landmark configuration
dims number of landmarks of each configuration
dimm dimension (2D or 3D) of each combined landmark configuration
twodlist the list used as input
Antonio Profico, Costantino Buzi, Marina Melchionna, Paolo Piras, Pasquale Raia, Alessio Veneziano
Profico, A., Piras, P., Buzi, C., Del Bove, A., Melchionna, M., Senczuk, G., ... & Manzi, G. (2019). Seeing the wood through the trees. Combining shape information from different landmark configurations. Hystrix, 157-165.
library(Morpho)
#load the 2D primate dataset
data("Lset2D_list")
length(Lset2D_list)
#combine the 2D datasets and PCA
combin2D<-twodviews(Lset2D_list,scale=TRUE,vector=c(1:5))
combin2D$size
#plot of the first two Principal Components
plot(combin2D$PCscores)
text(combin2D$PCscores,labels=rownames(combin2D$PCscores))
#load the 3D primate dataset
data("Lset3D_array")
#GPA and PCA
GPA_3D<-procSym(Lset3D_array)
#plot of the first two Principal Components
plot(GPA_3D$PCscores)
text(GPA_3D$PCscores,labels=rownames(GPA_3D$PCscores))