summary {ArchaeoPhases} | R Documentation |
Marginal Summary Statistics for Multiple MCMC Chains
Description
Calculates summary statistics of the output of the MCMC algorithm for multiple parameters. Results are given in calendar years (BC/AD).
Usage
## S4 method for signature 'MCMC'
summary(object, level = 0.95, calendar = getOption("ArchaeoPhases.calendar"))
## S4 method for signature 'PhasesMCMC'
summary(object, level = 0.95, calendar = getOption("ArchaeoPhases.calendar"))
Arguments
object |
An |
level |
A length-one |
calendar |
A |
Value
A data.frame
where the rows correspond to the chains of interest and
columns to the following statistics:
- mean
The mean of the MCMC chain.
- sd
The standard deviation of the MCMC chain.
- min
Minimum value of the MCMC chain.
- q1
First quantile of the MCMC chain.
- median
Median of the MCMC chain.
- q3
Third quantile of the MCMC chain.
- max
Maximum value of the MCMC chain.
- lower
Lower boundary of the credible interval of the MCMC chain at
level
.- upper
Upper boundary of the credible interval of the MCMC chain at
level
.
Author(s)
A. Philippe, M.-A. Vibet, T. S. Dye, N. Frerebeau
See Also
Other statistics:
interval_credible()
,
interval_hdr()
,
sensitivity()
Examples
## Coerce to MCMC
eve <- as_events(mcmc_events, calendar = CE(), iteration = 1)
## Summary
summary(eve, calendar = CE())
summary(eve, calendar = BP())
## Plot events
plot(eve, calendar = CE(), interval = "credible", level = 0.68)
plot(eve, calendar = BP(), interval = "hdr", level = 0.68)
plot(eve[, 1], interval = "hdr")
## Compute phases
pha <- phases(eve, groups = list(B = c(2, 4), A = c(1, 3)))
## Summary
summary(pha, calendar = CE())
summary(pha, calendar = BP())
## Plot phases
plot(pha, calendar = BP())
plot(pha, succession = "hiatus")
plot(pha, succession = "transition")