AM_mix_hyperparams_multinorm {AntMAN}R Documentation

multivariate Normal mixture hyperparameters

Description

Generate a configuration object that specifies a multivariate Normal mixture kernel, where users can specify the hyperparameters for the conjugate prior of the multivariate Normal mixture. We assume that the data are d-dimensional vectors yi\boldsymbol{y}_i, where yi\boldsymbol{y}_i are i.i.d Normal random variables with mean μ\boldsymbol{\mu} and covariance matrix Σ\boldsymbol{\Sigma}. The conjugate prior is

π(μ,Σm0,κ0,ν0,Λ0)=πμ(μΣ,m0,κ0)πΣ(Σν0,Λ0),\pi(\boldsymbol \mu, \boldsymbol \Sigma\mid\boldsymbol m_0,\kappa_0,\nu_0,\boldsymbol \Lambda_0)= \pi_{\mu}(\boldsymbol \mu|\boldsymbol \Sigma,\boldsymbol m_0,\kappa_0)\pi_{\Sigma}(\boldsymbol \Sigma \mid \nu_0,\boldsymbol \Lambda_0),

πμ(μΣ,m0,κ0)=κ0d(2π)dΣexp(κ02(μm0)TΣ1(μm0)),μRd, \pi_{\mu}(\boldsymbol \mu|\boldsymbol \Sigma,\boldsymbol m_0,\kappa_0) = \frac{\sqrt{\kappa_0^d}}{\sqrt {(2\pi )^{d}|{\boldsymbol \Sigma }|}} \exp \left(-{\frac {\kappa_0}{2}}(\boldsymbol\mu -{\boldsymbol m_0 })^{\mathrm {T} }{\boldsymbol{\Sigma }}^{-1}(\boldsymbol\mu-{\boldsymbol m_0 })\right), \qquad \boldsymbol \mu\in\mathcal{R}^d,

πΣ(Σν0,Λ0)=Λ0ν0/22ν0d/2Γd(ν02)Σ(ν0+d+1)/2e12tr(Λ0Σ1),Σ2>0,\pi_{\Sigma}(\boldsymbol \Sigma\mid \nu_0,\boldsymbol \Lambda_0)= {\frac {\left|{\boldsymbol \Lambda_0 }\right|^{\nu_0 /2}}{2^{\nu_0 d/2}\Gamma _{d}({\frac {\nu_0 }{2}})}}\left|\boldsymbol \Sigma \right|^{-(\nu_0 +d+1)/2}e^{-{\frac {1}{2}}\mathrm {tr} (\boldsymbol \Lambda_0 \boldsymbol \Sigma^{-1})} , \qquad \boldsymbol \Sigma^2>0,

where mu0 corresponds to m0\boldsymbol m_0, ka0 corresponds to κ0\kappa_0, nu0 to ν0\nu_0, and Lam0 to Λ0\Lambda_0.

Usage

AM_mix_hyperparams_multinorm(mu0 = NULL, ka0 = NULL, nu0 = NULL, Lam0 = NULL)

Arguments

mu0

The hyperparameter m0\boldsymbol m_0.

ka0

The hyperparameter κ0\kappa_0.

nu0

The hyperparameter ν0\nu_0.

Lam0

The hyperparameter Λ0\Lambda_0.

Details

Default is (mu0=c(0,..,0), ka0=1, nu0=Dim+2, Lam0=diag(Dim)) with Dim is the dimension of the data y. We advise the user to set ν0\nu_0 equal to at least the dimension of the data, Dim, plus 2.

Value

An AM_mix_hyperparams object. This is a configuration list to be used as mix_kernel_hyperparams argument for AM_mcmc_fit.

Examples

AM_mix_hyperparams_multinorm ()

[Package AntMAN version 1.1.0 Index]