LikelihoodRatio4Mixtures {AdaptGauss} | R Documentation |
Likelihood Ratio for Gaussian Mixtures
Description
Computes the likelihood ratio for two Gaussian Mixture Models.
Usage
LikelihoodRatio4Mixtures(Data,NullMixture,OneMixture,PlotIt,LowerLimit,UpperLimit)
Arguments
Data |
Data points. |
NullMixture |
A Matrix: cbind(Means0,SDs0,Weights0) or cbind(Means0,SDs0,Weights0,IsLog0). The null model; usually with less Gaussians than the OneMixture |
OneMixture |
A Matrix: cbind(Means1,SDs1,Weights1) or cbind(Means1,SDs1,Weights1,IsLog1). The alternative model usually with more Gaussians than the OneMixture. |
PlotIt |
Optional: Boolean, if TRUE a Plot of the compared cdf's and the KS-test distribution (Diff) is shown |
LowerLimit |
Optional: test only for Data >= LowerLimit, Default = min(Data) i.e all Data. |
UpperLimit |
Optional: test only for Data <= UpperLimit, Default = max(Data) i.e all Data. |
Value
List with
Pvalue |
the error that we make, if we accept OneMixture as the better Model over the NullMixture |
NullLogLikelihood |
log likelihood of GMM Null |
OneLogLikelihood |
log likelihood of GMM One |
Author(s)
Alfred Ultsch, Michael Thrun, Catharina Lippmann
Examples
data=c(rnorm(1000),rnorm(2000)+2,rnorm(1000)*2-1)
## Not run: Vals=AdaptGauss(data,c(-1,0,2),c(2,1,1),c(0.25,0.25,0.5),0.3,-6,6)
NullMixture=cbind(Vals$Means,Vals$SDs,Vals$Weights)
## End(Not run)
## Not run: Vals2=AdaptGauss(data,c(-1,0,2,3),c(2,1,1,1),c(0.25,0.25,0.25,0.25),0.3,-6,6)
OneMixture=cbind(Vals2$Means,Vals2$SDs,Vals2$Weights)
## End(Not run)
## Not run:
res=LikelihoodRatio4Mixtures(data,NullMixture,OneMixture,T)
## End(Not run)