| LikelihoodRatio4Mixtures {AdaptGauss} | R Documentation | 
Likelihood Ratio for Gaussian Mixtures
Description
Computes the likelihood ratio for two Gaussian Mixture Models.
Usage
LikelihoodRatio4Mixtures(Data,NullMixture,OneMixture,PlotIt,LowerLimit,UpperLimit)
Arguments
Data | 
 Data points.  | 
NullMixture | 
 A Matrix: cbind(Means0,SDs0,Weights0) or cbind(Means0,SDs0,Weights0,IsLog0). The null model; usually with less Gaussians than the OneMixture  | 
OneMixture | 
 A Matrix: cbind(Means1,SDs1,Weights1) or cbind(Means1,SDs1,Weights1,IsLog1). The alternative model usually with more Gaussians than the OneMixture.  | 
PlotIt | 
 Optional: Boolean, if TRUE a Plot of the compared cdf's and the KS-test distribution (Diff) is shown  | 
LowerLimit | 
 Optional: test only for Data >= LowerLimit, Default = min(Data) i.e all Data.  | 
UpperLimit | 
 Optional: test only for Data <= UpperLimit, Default = max(Data) i.e all Data.  | 
Value
List with
Pvalue | 
 the error that we make, if we accept OneMixture as the better Model over the NullMixture  | 
NullLogLikelihood | 
 log likelihood of GMM Null  | 
OneLogLikelihood | 
 log likelihood of GMM One  | 
Author(s)
Alfred Ultsch, Michael Thrun, Catharina Lippmann
Examples
  
  data=c(rnorm(1000),rnorm(2000)+2,rnorm(1000)*2-1)
  ## Not run: Vals=AdaptGauss(data,c(-1,0,2),c(2,1,1),c(0.25,0.25,0.5),0.3,-6,6)
  NullMixture=cbind(Vals$Means,Vals$SDs,Vals$Weights)
  
## End(Not run)
  ## Not run: Vals2=AdaptGauss(data,c(-1,0,2,3),c(2,1,1,1),c(0.25,0.25,0.25,0.25),0.3,-6,6)
  OneMixture=cbind(Vals2$Means,Vals2$SDs,Vals2$Weights)
  
## End(Not run)
  ## Not run: 
  res=LikelihoodRatio4Mixtures(data,NullMixture,OneMixture,T)
  
## End(Not run)