| apci.bar {APCI} | R Documentation | 
Make barplot for cohort effect
Description
Visualize cohort effects estimated by APC-I model with bar plots.
Usage
apci.bar(model, age, period, outcome_var, cohort_label = NULL, ...)
Arguments
| model | A list recording the results from function  | 
| age | An object of class character representing the age group index taking on a small number of distinct values in the data. Usually, the vector should be converted to a factor (or the terms of "category" and "enumerated type"). | 
| period | An object of class character, similar to the argument of age, representing the time period index in the data. | 
| outcome_var | An object of class character indicating the name of the outcome variable used in the model. The outcome variable can be a continuous, binary, categorical, or count variable. | 
| cohort_label | An optional vector, representing the labels of cohort groups in the x asix. | 
| ... | Additional arguments to be passed to the function. | 
Value
A bar plot visualizing the cohort effects estimated by APC-I model.
Examples
# load package
library("APCI")
# load data
test_data <- APCI::women9017
test_data$acc <- as.factor(test_data$acc)
test_data$pcc <- as.factor(test_data$pcc)
test_data$educc <- as.factor(test_data$educc)
test_data$educr <- as.factor(test_data$educr)
# fit APC-I model
APC_I <- APCI::apci(outcome = "inlfc",
                    age = "acc",
                    period = "pcc",
                    cohort = "ccc",
                    weight = "wt",
                    data = test_data,dev.test=FALSE,
                    print = TRUE,
                    family = "gaussian")
summary(APC_I)
## visualizing estimated cohort effects with bar plot
apci.bar(model = APC_I, age = "acc", period = "pcc")