z2y {AGD} | R Documentation |
Convert standard deviation scores (SDS) to measurements
Description
Converts standard deviation score (SDS) into measurements using an age- and sex-conditional external reference.
Usage
z2y(
z = c(-2, 0, 2),
x = 1,
sex = "M",
sub = "N",
ref = get("nl4.hgt"),
dist = "LMS",
dec = 3,
sex.fallback = NA,
sub.fallback = NA
)
Arguments
z |
A numerical vector containing standard deviation scores that are to
be converted. The length |
x |
A vector containing the values of the numerical covariate (typically
decimal age or height) at which conversion is desired. Values are replicated
to match |
sex |
A character vector indicating whether the male ( |
sub |
A character vector indicating the level of the |
ref |
A data frame containing a factor |
dist |
A string identifying the type of distribution. Values values are:
|
dec |
A scalar value indicating the number of decimals used to round the value. |
sex.fallback |
The level of the |
sub.fallback |
The level of the |
Details
Functions z2y()
and y2z()
are the inverse of each other.
The argument dist
determines the statistical distribution. The
possibilities are as follows:
- list("\"NO\"")
ref
should contain columnsmean
andsd
, containing the mean and the standard deviation in the external reference population.- list("\"LMS\"")
ref
should contain columnsL
,S
andM
containing the LMS parameters.- list("\"BCCG\"")
ref
should contain columnsmu
,sigma
andnu
containing the Box-Cox Cole-Green parameters.- list("\"BCPE\"")
ref
should contain columnsmu
,sigma
,nu
andtau
containing the Box-Cox Power Exponential parameters.- list("\"BCT\"")
ref
should contain columnsmu
,sigma
,nu
andtau
containing the Box-Cox T distribution parameters.
Value
For y2z()
: A vector with length(y)
elements containing
the standard deviation score. For z2y()
: A vector with
length(z)
elements containing quantiles.
Author(s)
Stef van Buuren, 2010
See Also
Examples
boys <- boys7482
# quantile at SD=0 of age 2 years,
# height Dutch boys
z2y(z=0, x=2)
# same for Dutch girls
z2y(z=0, x=2, sex="F")
# quantile at SD=c(-1,0,1) of age 2 years, BMI Dutch boys
z2y(z=c(-1,0,+1), x=2, ref=nl4.bmi)
# 0SD line (P50) in kg of weight for age in 5-10 year, Dutch boys
z2y(z=rep(0,6), x=5:10, ref=nl4.wgt)
# 95th percentile (P95), age 10 years, wfa, Dutch boys
z2y(z=qnorm(0.95), x=10, ref=nl4.wgt)
# table of P3, P10, P50, P90, P97 of weight for 5-10 year old dutch boys
# age per year
age <- 5:10
p <- c(0.03,0.1,0.5,0.9,0.97)
z <- rep(qnorm(p), length(age))
x <- rep(age, each=length(p))
w <- matrix(z2y(z, x=x, sex="M", ref=nl4.wgt), ncol=length(p),
byrow=TRUE)
dimnames(w) <- list(age, p)
round(w,1)
# standard set of Z-scores of weight for all tabulated ages, boys & girls
# and three etnicities
sds <- c(-2.5, -2, -1, 0, 1, 2, 2.5)
age <- nl4.wgt$x
z <- rep(sds, times=length(age))
x <- rep(age, each=length(sds))
sex <- rep(c("M","F"), each=length(z)/2)
w <- z2y(z=z, x=x, sex=sex, ref=nl4.wgt)
w <- matrix(w, ncol=length(sds), byrow=TRUE)
dimnames(w) <- list(age, sds)
data.frame(sub=nl4.wgt$sub,sex=nl4.wgt$sex,round(w,2), row.names=NULL)
# P85 of BMI in 5-8 year old Dutch boys and girls
e <- expand.grid(age=5:8, sex=c("M","F"))
w <- z2y(z=rep(qnorm(0.85),nrow(e)), x=e$age, sex=e$sex, ref=nl4.bmi)
w <- matrix(w, nrow=2, byrow=TRUE)
dimnames(w) <- list(c("boys","girls"),5:8)
w
# data transformation of height z-scores to cm-scale
z <- c(-1.83, 0.09, 2.33, 0.81, -1.20)
x <- c(8.33, 0.23, 19.2, 24.3, 10)
sex <- c("M", "M", "F", "M", "F")
round(z2y(z=z, x=x, sex=sex, ref=nl4.hgt), 1)
# interpolate published height standard
# to daily values, days 0-31, boys
# on centiles -2SD, 0SD and +2SD
days <- 0:31
sds <- c(-2, 0, +2)
z <- rep(sds, length(days))
x <- rep(round(days/365.25,4), each=length(sds))
w <- z2y(z, x, sex="M", ref=nl4.hgt)
w <- matrix(w, ncol=length(sds), byrow=TRUE)
dimnames(w) <- list(days, sds)
w