ns {ACSWR} | R Documentation |
Simulated Sample from Normal Distribution
Description
The data set is used to understand the sampling variation of the score function. The simulated data is available in Pawitan (2001).
Usage
data(ns)
Format
A data frame with 10 observations on the following 20 variables.
Sample.1
a numeric vector
Sample.2
a numeric vector
Sample.3
a numeric vector
Sample.4
a numeric vector
Sample.5
a numeric vector
Sample.6
a numeric vector
Sample.7
a numeric vector
Sample.8
a numeric vector
Sample.9
a numeric vector
Sample.10
a numeric vector
Sample.11
a numeric vector
Sample.12
a numeric vector
Sample.13
a numeric vector
Sample.14
a numeric vector
Sample.15
a numeric vector
Sample.16
a numeric vector
Sample.17
a numeric vector
Sample.18
a numeric vector
Sample.19
a numeric vector
Sample.20
a numeric vector
Source
Pawitan, Y. (2001). In All Likelihood. Oxford Science Publications.
References
Pawitan, Y. (2001). In All Likelihood. Oxford Science Publications.
Examples
library(stats4)
data(ns)
x <- ns[,1]
nlogl <- function(mean,sd) { -sum(dnorm(x,mean=mean,sd=sd,log=TRUE)) }
norm_mle <- mle(nlogl,start=list(mean=median(x),sd=IQR(x)),nobs=length(x))
summary(norm_mle)
[Package ACSWR version 1.0 Index]