rWishart {stats} | R Documentation |
Random Wishart Distributed Matrices
Description
Generate n
random matrices, distributed according to the
Wishart distribution with parameters Sigma
and df
,
.
Usage
rWishart(n, df, Sigma)
Arguments
n |
integer sample size. |
df |
numeric parameter, “degrees of freedom”. |
Sigma |
positive definite ( |
Details
If is
a sample of
independent multivariate Gaussians with mean (vector) 0, and
covariance matrix
, the distribution of
is
.
Consequently, the expectation of is
Further, if Sigma
is scalar (), the Wishart
distribution is a scaled chi-squared (
)
distribution with
df
degrees of freedom,
.
The component wise variance is
Value
a numeric array
, say R
, of dimension
, where each
R[,,i]
is a
positive definite matrix, a realization of the Wishart distribution
.
Author(s)
Douglas Bates
References
Mardia, K. V., J. T. Kent, and J. M. Bibby (1979) Multivariate Analysis, London: Academic Press.
See Also
Examples
## Artificial
S <- toeplitz((10:1)/10)
set.seed(11)
R <- rWishart(1000, 20, S)
dim(R) # 10 10 1000
mR <- apply(R, 1:2, mean) # ~= E[ Wish(S, 20) ] = 20 * S
stopifnot(all.equal(mR, 20*S, tolerance = .009))
## See Details, the variance is
Va <- 20*(S^2 + tcrossprod(diag(S)))
vR <- apply(R, 1:2, var)
stopifnot(all.equal(vR, Va, tolerance = 1/16))