Nile {datasets}R Documentation

Flow of the River Nile

Description

Measurements of the annual flow of the river Nile at Aswan (formerly Assuan), 1871–1970, in 10^8 m^3, “with apparent changepoint near 1898” (Cobb(1978), Table 1, p.249).

Usage

Nile

Format

A time series of length 100.

Source

Durbin, J. and Koopman, S. J. (2001). Time Series Analysis by State Space Methods. Oxford University Press.

References

Balke, N. S. (1993). Detecting level shifts in time series. Journal of Business and Economic Statistics, 11, 81–92. doi:10.2307/1391308.

Cobb, G. W. (1978). The problem of the Nile: conditional solution to a change-point problem. Biometrika 65, 243–51. doi:10.2307/2335202.

Examples

require(stats); require(graphics)
par(mfrow = c(2, 2))
plot(Nile)
acf(Nile)
pacf(Nile)
ar(Nile) # selects order 2
cpgram(ar(Nile)$resid)
par(mfrow = c(1, 1))
arima(Nile, c(2, 0, 0))

## Now consider missing values, following Durbin & Koopman
NileNA <- Nile
NileNA[c(21:40, 61:80)] <- NA
arima(NileNA, c(2, 0, 0))
plot(NileNA)
pred <-
   predict(arima(window(NileNA, 1871, 1890), c(2, 0, 0)), n.ahead = 20)
lines(pred$pred, lty = 3, col = "red")
lines(pred$pred + 2*pred$se, lty = 2, col = "blue")
lines(pred$pred - 2*pred$se, lty = 2, col = "blue")
pred <-
   predict(arima(window(NileNA, 1871, 1930), c(2, 0, 0)), n.ahead = 20)
lines(pred$pred, lty = 3, col = "red")
lines(pred$pred + 2*pred$se, lty = 2, col = "blue")
lines(pred$pred - 2*pred$se, lty = 2, col = "blue")

## Structural time series models
par(mfrow = c(3, 1))
plot(Nile)
## local level model
(fit <- StructTS(Nile, type = "level"))
lines(fitted(fit), lty = 2)              # contemporaneous smoothing
lines(tsSmooth(fit), lty = 2, col = 4)   # fixed-interval smoothing
plot(residuals(fit)); abline(h = 0, lty = 3)
## local trend model
(fit2 <- StructTS(Nile, type = "trend")) ## constant trend fitted
pred <- predict(fit, n.ahead = 30)
## with 50% confidence interval
ts.plot(Nile, pred$pred,
        pred$pred + 0.67*pred$se, pred$pred -0.67*pred$se)

## Now consider missing values
plot(NileNA)
(fit3 <- StructTS(NileNA, type = "level"))
lines(fitted(fit3), lty = 2)
lines(tsSmooth(fit3), lty = 3)
plot(residuals(fit3)); abline(h = 0, lty = 3)

[Package datasets version 4.4.1 Index]