zipfpssVariance {zipfextR} | R Documentation |
Variance of the Zipf-PSS distribution.
Description
Computes the variance of the Zipf-PSS distribution for given values of parameters
\alpha
and \lambda
.
Usage
zipfpssVariance(alpha, lambda, isTruncated = FALSE)
Arguments
alpha |
Value of the |
lambda |
Value of the |
isTruncated |
Logical; if TRUE Use the zero-truncated version of the distribution to calculate the expected value (default = FALSE). |
Details
The variance of the Zipf-PSS distribution only exists for \alpha
values strictly greater than 3.
The value is obtained from the law of total variance that says that:
Var[Y] = E[N]\, Var[X] + E[X]^2 \, Var[N],
where X follows a Zipf distribution with parameter \alpha
, and N follows a Poisson distribution with
parameter \lambda
. From where one has that:
Var[Y] = \lambda\, \frac{\zeta(\alpha - 2)}{\zeta(\alpha)}
Particularlly, if one is working with the zero-truncated version of the Zipf-PSS distribution. This values is computed as:
Var[Y^{ZT}] = \frac{\lambda\, \zeta(\alpha)\, \zeta(\alpha - 2)\, (1 - e^{-\lambda}) - \lambda^2 \, \zeta(\alpha - 1)^2 \, e^{-\lambda}}{\zeta(\alpha)^2 \, (1 - e^{-\lambda})^2}
Value
A positive real value corresponding to the variance of the distribution.
References
Sarabia Alegría, JM. and Gómez Déniz, E. and Vázquez Polo, F. Estadística actuarial: teoría y aplicaciones. Pearson Prentice Hall.
Examples
zipfpssVariance(4.5, 2.3)
zipfpssVariance(4.5, 2.3, TRUE)