zipfpssMean {zipfextR} | R Documentation |
Expected value of the Zipf-PSS distribution.
Description
Computes the expected value of the Zipf-PSS distribution for given values of parameters
\alpha
and \lambda
.
Usage
zipfpssMean(alpha, lambda, isTruncated = FALSE)
Arguments
alpha |
Value of the |
lambda |
Value of the |
isTruncated |
Logical; if TRUE Use the zero-truncated version of the distribution to calculate the expected value (default = FALSE). |
Details
The expected value of the Zipf-PSS distribution only exists for \alpha
values strictly
greater than 2. The value is obtained from the law of total expectation that says that:
E[Y] = E[N]\, E[X],
where E[X] is the mean value of the Zipf distribution and E[N] is the expected value of a Poisson one. From where one has that:
E[Y] = \lambda\, \frac{\zeta(\alpha - 1)}{\zeta(\alpha)}
Particularlly, if one is working with the zero-truncated version of the Zipf-PSS distribution. This values is computed as:
E[Y^{ZT}] = \frac{\lambda\, \zeta(\alpha - 1)}{\zeta(\alpha)\, (1 - e^{-\lambda})}
Value
A positive real value corresponding to the mean value of the distribution.
References
Sarabia Alegría, J. M., Gómez Déniz, E. M. I. L. I. O., & Vázquez Polo, F. (2007). Estadística actuarial: teoría y aplicaciones. Pearson Prentice Hall.
Examples
zipfpssMean(2.5, 1.3)
zipfpssMean(2.5, 1.3, TRUE)