zipfpssFit {zipfextR} | R Documentation |
Zipf-PSS parameters estimation.
Description
For a given sample of strictly positive integer numbers, usually of the type of ranking data or frequencies of frequencies data, estimates the parameters of the Zipf-PSS distribution by means of the maximum likelihood method. The input data should be provided as a frequency matrix.
Usage
zipfpssFit(data, init_alpha = NULL, init_lambda = NULL, level = 0.95,
isTruncated = FALSE, ...)
## S3 method for class 'zipfpssR'
residuals(object, isTruncated = FALSE, ...)
## S3 method for class 'zipfpssR'
fitted(object, isTruncated = FALSE, ...)
## S3 method for class 'zipfpssR'
coef(object, ...)
## S3 method for class 'zipfpssR'
plot(x, isTruncated = FALSE, ...)
## S3 method for class 'zipfpssR'
print(x, ...)
## S3 method for class 'zipfpssR'
summary(object, isTruncated = FALSE, ...)
## S3 method for class 'zipfpssR'
logLik(object, ...)
## S3 method for class 'zipfpssR'
AIC(object, ...)
## S3 method for class 'zipfpssR'
BIC(object, ...)
Arguments
data |
Matrix of count data in form of table of frequencies. |
init_alpha |
Initial value of |
init_lambda |
Initial value of |
level |
Confidence level used to calculate the confidence intervals (default 0.95). |
isTruncated |
Logical; if TRUE, the truncated version of the distribution is returned.(default = FALSE) |
... |
Further arguments to the generic functions. The extra arguments are passing to the optim function. |
object |
An object from class "zpssR" (output of zipfpssFit function). |
x |
An object from class "zpssR" (output of zipfpssFit function). |
Details
The argument data
is a two column matrix with the first column containing the observations and
the second column containing their frequencies.
The log-likelihood function is equal to:
l(\alpha, \lambda, x) = \sum_{i =1} ^{m} f_a(x_i)\, log(P(Y = x_i)),
where m
is the number of different values in the sample, being f_{a}(x_i)
is the absolute
frequency of x_i
.The probabilities are calculated applying the Panjer recursion.
By default the initial values of the parameters are computed using the function getInitialValues
.
The function optim is used to estimate the parameters.
Value
Returns a zpssR object composed by the maximum likelihood parameter estimations jointly with their standard deviation and confidence intervals and the value of the log-likelihood at the maximum likelihood estimator.
References
Panjer, H. H. (1981). Recursive evaluation of a family of compound distributions. ASTIN Bulletin: The Journal of the IAA, 12(1), 22-26.
Sundt, B., & Jewell, W. S. (1981). Further results on recursive evaluation of compound distributions. ASTIN Bulletin: The Journal of the IAA, 12(1), 27-39.
See Also
Examples
data <- rzipfpss(100, 2.5, 1.3)
data <- as.data.frame(table(data))
data[,1] <- as.numeric(as.character(data[,1]))
data[,2] <- as.numeric(as.character(data[,2]))
initValues <- getInitialValues(data, model='zipfpss')
obj <- zipfpssFit(data, init_alpha = initValues$init_alpha, init_lambda = initValues$init_lambda)