zipfpolylogMoments {zipfextR} | R Documentation |
Moments of the Zipf-Polylog Distribution.
Description
General function to compute the k-th moment of the ZipfPolylog distribution for any integer value k \geq 1
,
when it exists. #'
For k = 1, this function returns the same value as the zipfpolylogMean function.
Usage
zipfpolylogMoments(k, alpha, beta, tolerance = 10^(-4), nSum = 1000)
Arguments
k |
Order of the moment to compute. |
alpha |
Value of the |
beta |
Value of the |
tolerance |
Tolerance used in the calculations (default = |
nSum |
The number of terms used for computing the Polylogarithm function (default = 1000). |
Details
The k-th moment of the Zipf-Polylog distribution is always finite, but,
for \alpha >1
and \beta = 0
the k-th moment is only finite for all \alpha > k + 1
.
It is computed by calculating the partial sums of the serie, and stopping when two
consecutive partial sums differ less than the tolerance
value.
The value of the last partial sum is returned.
Value
A positive real value corresponding to the k-th moment of the distribution.
Examples
zipfpolylogMoments(1, 0.2, 0.90)
zipfpolylogMoments(3, 4.5, 0.90, 1*10^(-3))