zipfpe {zipfextR} | R Documentation |
The Zipf-Poisson Extreme Distribution (Zipf-PE).
Description
Probability mass function, cumulative distribution function, quantile function and random number
generation for the Zipf-PE distribution with parameters \alpha
and \beta
. The support of the Zipf-PE
distribution are the strictly positive integer numbers large or equal than one.
Usage
dzipfpe(x, alpha, beta, log = FALSE)
pzipfpe(q, alpha, beta, log.p = FALSE, lower.tail = TRUE)
qzipfpe(p, alpha, beta, log.p = FALSE, lower.tail = TRUE)
rzipfpe(n, alpha, beta)
Arguments
x , q |
Vector of positive integer values. |
alpha |
Value of the |
beta |
Value of the |
log , log.p |
Logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
Logical; if TRUE (default), probabilities are |
p |
Vector of probabilities. |
n |
Number of random values to return. |
Details
The probability mass function of the Zipf-PE distribution with parameters \alpha
and \beta
at a positive integer value x
is computed as follows:
p(x | \alpha, \beta) = \frac{e^{\beta (1 - \frac{\zeta(\alpha, x)}{\zeta(\alpha)})} (e^{\beta \frac{x^{-\alpha}}{\zeta(\alpha)}} - 1)}
{e^{\beta} - 1},\, x= 1,2,...,\, \alpha > 1,\, -\infty < \beta < +\infty,
where \zeta(\alpha)
is the Riemann-zeta function at \alpha
, and \zeta(\alpha, x)
is the Hurtwitz zeta function with arguments \alpha
and x.
The cumulative distribution function at a given positive
integer value x
, F(x)
, is equal to:
F(x) = \frac{e^{\beta (1 - \frac{\zeta(\alpha, x + 1)}{\zeta(\alpha)})} - 1}{e^{\beta} -1}
The quantile of the Zipf-PE(\alpha, \beta)
distribution of a given probability value p
is equal to the quantile of the Zipf(\alpha)
distribution at the value:
p\prime = \frac{log(p\, (e^{\beta} - 1) + 1)}{\beta}
The quantiles of the Zipf(\alpha)
distribution are computed by means of the tolerance
package.
To generate random data from a Zipf-PE one applies the quantile function over n values randomly generated from an Uniform distribution in the interval (0, 1).
Value
dzipfpe
gives the probability mass function,
pzipfpe
gives the cumulative function,
qzipfpe
gives the quantile function, and
rzipfpe
generates random values from a Zipf-PE distribution.
References
Young, D. S. (2010). Tolerance: an R package for estimating tolerance intervals. Journal of Statistical Software, 36(5), 1-39.
Examples
dzipfpe(1:10, 2.5, -1.5)
pzipfpe(1:10, 2.5, -1.5)
qzipfpe(0.56, 2.5, 1.3)
rzipfpe(10, 2.5, 1.3)