zic.svs {zic} | R Documentation |
SVS for Zero-Inflated Count Models
Description
zic.svs
applies SVS to zero-inflated count models
Usage
zic.svs(formula, data,
a0, g0.beta, h0.beta, nu0.beta, r0.beta, s0.beta, e0, f0,
c0, g0.delta, h0.delta, nu0.delta, r0.delta, s0.delta,
n.burnin, n.mcmc, n.thin, tune = 1.0, scale = TRUE)
Arguments
formula |
A symbolic description of the model to be fit specifying the response variable and covariates. |
data |
A data frame in which to interpret the variables in |
a0 |
The prior variance of |
g0.beta |
The shape parameter for the inverse gamma prior on |
h0.beta |
The inverse scale parameter for the inverse gamma prior on |
nu0.beta |
Prior parameter for the spike of the hypervariances for the |
r0.beta |
Prior parameter of |
s0.beta |
Prior parameter of |
e0 |
The shape parameter for the inverse gamma prior on |
f0 |
The inverse scale parameter the inverse gamma prior on |
c0 |
The prior variance of |
g0.delta |
The shape parameter for the inverse gamma prior on |
h0.delta |
The inverse scale parameter for the inverse gamma prior on |
nu0.delta |
Prior parameter for the spike of the hypervariances for the |
r0.delta |
Prior parameter of |
s0.delta |
Prior parameter of |
n.burnin |
Number of burn-in iterations of the sampler. |
n.mcmc |
Number of iterations of the sampler. |
n.thin |
Thinning interval. |
tune |
Tuning parameter of Metropolis-Hastings step. |
scale |
If true, all covariates (except binary variables) are rescaled by dividing by their respective standard errors. |
Details
The considered zero-inflated count model is given by
y_i^* \sim \mathrm{Poisson}[\exp(\eta^*_i)],
\eta^*_i = \alpha + x_i'\beta + \varepsilon_i,\; \varepsilon_i \sim \mathrm{N}(0,\sigma^2),
d_i^* = \gamma + x_i'\delta + \nu_i,\; \nu_i \sim \mathrm{N}(0,1),
y_i = 1(d_i^*>0)y_i^*,
where y_i
and x_i
are observed. The assumed prior distributions are
\alpha \sim \mathrm{N}(0,a_0),
\beta_k\sim \mathrm{N}(0,\tau^\beta_k\kappa^\beta_k),, \quad k=1,\ldots,K,
\kappa^\beta_j\sim\textrm{Inv-Gamma}(g_0^\beta,h_0^\beta),
\tau_k^\beta \sim (1-\omega^\beta)\delta_{\nu^\beta_0}+\omega^\beta\delta_1,
\omega^\beta\sim\mathrm{Beta}(r_0^\beta,s_0^\beta),
\gamma \sim \mathrm{N}(0,c_0),
\delta_k\sim \mathrm{N}(0,\tau^\delta_k\kappa^\delta_k), \quad k=1,\ldots,K,
\kappa^\delta_k\sim\textrm{Inv-Gamma}(g_0^\delta,h_0^\delta),
\tau_k^\delta \sim (1-\omega^\delta)\delta_{\nu^\delta_0}+\omega^\delta\delta_1,
\omega^\delta\sim\mathrm{Beta}(r_0^\delta,s_0^\delta),
\sigma^2 \sim \textrm{Inv-Gamma}\left(e_0,f_0\right).
The sampling algorithm described in Jochmann (2013) is used.
Value
A list containing the following elements:
alpha |
Posterior draws of |
beta |
Posterior draws of |
gamma |
Posterior draws of |
delta |
Posterior draws of |
sigma2 |
Posterior draws of |
I.beta |
Posterior draws of indicator whether |
I.delta |
Posterior draws of indicator whether |
omega.beta |
Posterior draws of |
omega.delta |
Posterior draws of |
acc |
Acceptance rate of the Metropolis-Hastings step. |
References
Jochmann, M. (2013). “What Belongs Where? Variable Selection for Zero-Inflated Count Models with an Application to the Demand for Health Care”, Computational Statistics, 28, 1947–1964.
Examples
## Not run:
data( docvisits )
mdl <- docvisits ~ age + agesq + health + handicap + hdegree + married + schooling +
hhincome + children + self + civil + bluec + employed + public + addon
post <- zic.ssvs( mdl, docvisits,
10.0, 5.0, 5.0, 1.0e-04, 2.0, 2.0, 1.0, 1.0,
10.0, 5.0, 5.0, 1.0e-04, 2.0, 2.0,
1000, 10000, 10, 1.0, TRUE )
## End(Not run)