Plot.ispline {zetadiv} | R Documentation |
Plots I-splines for Multi-Site Generalised Dissimilarity Modelling
Description
Plots I-splines computed by Return.ispline
, or calls Return.ispline
if the outputs from Zeta.msgdm
are provided before plotting.
Usage
Plot.ispline(
isplines = NULL,
msgdm,
data.env,
distance = FALSE,
biotic = 0,
pch = NULL,
lty = NULL,
legend = TRUE,
lwd = 1,
cex = 1,
num.quantiles = 11
)
Arguments
isplines |
Output of function |
msgdm |
Output of function |
data.env |
Site-by-variable data frame used for the computation of |
distance |
Boolean, indicates is distance was used in the computation of |
biotic |
Boolean, indicates is zeta diversity from another community was used in the computation of |
pch |
Shapes of the points to be used in the plotting. If nothing is provided, |
lty |
Line types to be used in the plotting. If nothing is provided, |
legend |
Boolean, indicates if the legend must be drawn. |
lwd |
Line width. |
cex |
Point size. |
num.quantiles |
Number of points to plot on the I-splines. Default is 11 to plot a point every 10 percents of the range of values. |
Value
Plot.ispline
returns a data frame with the same number of rows as dat and ncol(dat)
* (order.ispline
+ kn.ispline)
columns.
References
Ramsay, J. O. (1988). Monotone regression splines in action. Statistical Science, 425-441.
Ferrier, S., Manion, G., Elith, J., & Richardson, K. (2007). Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Diversity and Distributions, 13(3), 252-264.
See Also
Examples
utils::data(Marion.species)
xy.marion <- Marion.species[1:2]
data.spec.marion <- Marion.species[3:33]
utils::data(Marion.env)
data.env.marion <- Marion.env[3]
zeta.ispline <- Zeta.msgdm(data.spec.marion, data.env.marion, xy.marion, sam = 100,
order = 3, normalize = "Jaccard", reg.type = "ispline")
zeta.ispline
zeta.ispline.r <- Return.ispline(zeta.ispline, data.env.marion, distance = TRUE)
zeta.ispline.r
dev.new()
Plot.ispline(isplines = zeta.ispline.r, distance = TRUE)
dev.new()
Plot.ispline(msgdm = zeta.ispline, data.env = data.env.marion, distance = TRUE)