setPoisson {yuima} | R Documentation |
Basic constructor for Compound Poisson processes
Description
'setPoisson' construct a Compound Poisson model specification for a process of the form:
Mt = m0+sum_{i=0}^Nt c*Y_{tau_i}, M0=m0
where Nt is a homogeneous or time-inhomogeneous Poisson process, tau_i is the sequence of random times of Nt and Y is a sequence of i.i.d. random jumps.
Usage
setPoisson(intensity = 1, df = NULL, scale = 1, dimension=1, ...)
Arguments
intensity |
either and expression or a numerical value representing the intensity function of the Poisson process Nt. |
df |
is the density of jump random variables Y. |
scale |
this is the scaling factor |
dimension |
this is the dimension of the jump component. |
... |
passed to |
Details
An object of yuima.model-class
where the model
slot is of class yuima.poisson-class
.
Value
model |
an object of |
Author(s)
The YUIMA Project Team
Examples
## Not run:
Terminal <- 10
samp <- setSampling(T=Terminal,n=1000)
# Ex 1. (Simple homogeneous Poisson process)
mod1 <- setPoisson(intensity="lambda", df=list("dconst(z,1)"))
set.seed(123)
y1 <- simulate(mod1, true.par=list(lambda=1),sampling=samp)
plot(y1)
# scaling the jumps
mod2 <- setPoisson(intensity="lambda", df=list("dconst(z,1)"),scale=5)
set.seed(123)
y2 <- simulate(mod2, true.par=list(lambda=1),sampling=samp)
plot(y2)
# scaling the jumps through the constant distribution
mod3 <- setPoisson(intensity="lambda", df=list("dconst(z,5)"))
set.seed(123)
y3 <- simulate(mod3, true.par=list(lambda=1),sampling=samp)
plot(y3)
# Ex 2. (Time inhomogeneous Poisson process)
mod4 <- setPoisson(intensity="beta*(1+sin(lambda*t))", df=list("dconst(z,1)"))
set.seed(123)
lambda <- 3
beta <- 5
y4 <- simulate(mod4, true.par=list(lambda=lambda,beta=beta),sampling=samp)
par(mfrow=c(2,1))
par(mar=c(3,3,1,1))
plot(y4)
f <- function(t) beta*(1+sin(lambda*t))
curve(f, 0, Terminal, col="red")
# Ex 2. (Time inhomogeneous Compound Poisson process with Gaussian Jumps)
mod5 <- setPoisson(intensity="beta*(1+sin(lambda*t))", df=list("dnorm(z,mu,sigma)"))
set.seed(123)
y5 <- simulate(mod5, true.par=list(lambda=lambda,beta=beta,mu=0, sigma=2),sampling=samp)
plot(y5)
f <- function(t) beta*(1+sin(lambda*t))
curve(f, 0, Terminal, col="red")
## End(Not run)
[Package yuima version 1.15.27 Index]