setIntegral {yuima} | R Documentation |
Integral of Stochastic Differential Equation
Description
'setIntegral
' is the constructor of an object of class yuima.Integral
Usage
setIntegral(yuima, integrand, var.dx, lower.var, upper.var,
out.var = "", nrow = 1, ncol = 1)
Arguments
yuima |
an object of class |
integrand |
A matrix or a vector of strings that describe each component of the integrand. |
var.dx |
A label that indicates the variable of integration |
lower.var |
A label that indicates the lower variable in the support of integration, by default |
upper.var |
A label that indicates the upper variable in the support of integration, by default |
out.var |
Label for the output |
nrow |
Dimension of output if |
ncol |
Dimension of output if |
Value
The constructor returns an object of class yuima.Integral
.
Author(s)
The YUIMA Project Team
References
Yuima Documentation
Examples
## Not run:
# Definition Model
Mod1<-setModel(drift=c("a1"), diffusion = matrix(c("s1"),1,1),
solve.variable = c("X"), time.variable = "s")
# In this example we define an integral of SDE such as
# \[
# I=\int^{t}_{0} b*exp(-a*(t-s))*(X_s-a1*s)dX_s
# \]
integ <- matrix("b*exp(-a*(t-s))*(X-a1*s)",1,1)
Integral <- setIntegral(yuima = Mod1,integrand = integ,
var.dx = "X", lower.var = "0", upper.var = "t",
out.var = "", nrow =1 ,ncol=1)
# Structure of slots
is(Integral)
# Function h in the above definition
Integral@Integral@Integrand@IntegrandList
# Dimension of Intgrand
Integral@Integral@Integrand@dimIntegrand
# all parameters are $\left(b,a,a1,s1\right)$
Integral@Integral@param.Integral@allparam
# the parameters in the integrand are $\left(b,a,a1\right)$ \newline
Integral@Integral@param.Integral@Integrandparam
# common parameters are $a1$
Integral@Integral@param.Integral@common
# integral variable dX_s
Integral@Integral@variable.Integral@var.dx
Integral@Integral@variable.Integral@var.time
# lower and upper vars
Integral@Integral@variable.Integral@lower.var
Integral@Integral@variable.Integral@upper.var
## End(Not run)
[Package yuima version 1.15.27 Index]