| limiting.gamma {yuima} | R Documentation | 
calculate the value of limiting covariance matrices : Gamma
Description
To confirm assysmptotic normality of theta estimators.
Usage
limiting.gamma(obj,theta,verbose=FALSE)
Arguments
obj | 
 an yuima or yuima.model object.  | 
theta | 
 true theta  | 
verbose | 
 an option for display a verbose process.  | 
Details
Calculate the value of limiting covariance matrices Gamma. The returned values gamma1 and gamma2 are used to confirm assysmptotic normality of theta estimators. this program is limitted to 1-dimention-sde model for now.
Value
gamma1 | 
 a theoretical figure for variance of theta1 estimator  | 
gamma2 | 
 a theoretical figure for variance of theta2 estimator  | 
Note
we need to fix this routine.
Author(s)
The YUIMA Project Team
Examples
set.seed(123)
## Yuima
diff.matrix <- matrix(c("theta1"), 1, 1)
myModel <- setModel(drift=c("(-1)*theta2*x"), diffusion=diff.matrix, 
time.variable="t", state.variable="x")
n <- 100
mySampling <- setSampling(Terminal=(n)^(1/3), n=n)
myYuima <- setYuima(model=myModel, sampling=mySampling)
myYuima <- simulate(myYuima, xinit=1, true.parameter=list(theta1=0.6, theta2=0.3))
## theorical figure of theta
theta1 <- 3.5
theta2 <- 1.3
theta <- list(theta1, theta2)
lim.gamma <- limiting.gamma(obj=myYuima, theta=theta, verbose=TRUE)
## return theta1 and theta2 with list
lim.gamma$list
## return theta1 and theta2 with vector
lim.gamma$vec
[Package yuima version 1.15.27 Index]