get.counting.data {yuima} | R Documentation |
Extract arrival times from an object of class yuima.PPR
Description
This function extracts arrival times from an object of class yuima.PPR
.
Usage
get.counting.data(yuimaPPR,type="zoo")
Arguments
yuimaPPR |
An object of class |
type |
By default |
Value
By default the function returns an object of class zoo. The arrival times can be extracted by applying the method index
to the output
Examples
## Not run:
##################
# Hawkes Process #
##################
# Values of parameters.
mu <- 2
alpha <- 4
beta <-5
# Law definition
my.rHawkes <- function(n){
res <- t(t(rep(1,n)))
return(res)
}
Law.Hawkes <- setLaw(rng = my.rHawkes)
# Point Process Definition
gFun <- "mu"
Kernel <- "alpha*exp(-beta*(t-s))"
modHawkes <- setModel(drift = c("0"), diffusion = matrix("0",1,1),
jump.coeff = matrix(c("1"),1,1), measure = list(df = Law.Hawkes),
measure.type = "code", solve.variable = c("N"),
xinit=c("0"))
prvHawkes <- setPPR(yuima = modHawkes, counting.var="N", gFun=gFun,
Kernel = as.matrix(Kernel), lambda.var = "lambda",
var.dx = "N", lower.var="0", upper.var = "t")
true.par <- list(mu=mu, alpha=alpha, beta=beta)
set.seed(1)
Term<-70
n<-7000
# Simulation trajectory
time.Hawkes <-system.time(
simHawkes <- simulate(object = prvHawkes, true.parameter = true.par,
sampling = setSampling(Terminal =Term, n=n))
)
# Arrival times of the Counting process.
DataHawkes <- get.counting.data(simHawkes)
TimeArr <- index(DataHawkes)
##################################
# Point Process Regression Model #
##################################
# Values of parameters.
mu <- 2
alpha <- 4
beta <-5
# Law definition
my.rKern <- function(n,t){
res0 <- t(t(rgamma(n, 0.1*t)))
res1 <- t(t(rep(1,n)))
res <- cbind(res0,res1)
return(res)
}
Law.PPRKern <- setLaw(rng = my.rKern)
# Point Process definition
modKern <- setModel(drift = c("0.4*(0.1-X)","0"),
diffusion = c("0","0"),
jump.coeff = matrix(c("1","0","0","1"),2,2),
measure = list(df = Law.PPRKern),
measure.type = c("code","code"),
solve.variable = c("X","N"),
xinit=c("0.25","0"))
gFun <- "exp(mu*log(1+X))"
#
Kernel <- "alpha*exp(-beta*(t-s))"
prvKern <- setPPR(yuima = modKern,
counting.var="N", gFun=gFun,
Kernel = as.matrix(Kernel),
lambda.var = "lambda", var.dx = "N",
lower.var="0", upper.var = "t")
# Simulation
Term<-100
seed<-1
n<-10000
true.parKern <- list(mu=mu, alpha=alpha, beta=beta)
set.seed(seed)
# set.seed(1)
time.simKern <-system.time(
simprvKern <- simulate(object = prvKern, true.parameter = true.parKern,
sampling = setSampling(Terminal =Term, n=n))
)
plot(simprvKern,main ="Counting Process with covariates" ,cex.main=0.9)
# Arrival Times
CountVar <- get.counting.data(simprvKern)
TimeArr <- index(CountVar)
## End(Not run)
[Package yuima version 1.15.27 Index]