fitCIR {yuima} | R Documentation |
Calculate preliminary estimator and one-step improvements of a Cox-Ingersoll-Ross diffusion
Description
This is a function to simulate the preliminary estimator and the corresponding one step estimators based on the Newton-Raphson and the scoring method of the Cox-Ingersoll-Ross process given via the SDE
\mathrm{d} X_t = (\alpha-\beta X_t)\mathrm{d} t + \sqrt{\gamma X_t}\mathrm{d} W_t
with parameters \beta>0,
2\alpha>5\gamma>0
and a Brownian motion (W_t)_{t\geq 0}
. This function uses the Gaussian quasi-likelihood, hence requires that data is sampled at high-frequency.
Usage
fitCIR(data)
Arguments
data |
a numeric matrix
containing the realization of |
Details
The estimators calculated by this function can be found in the reference below.
Value
A list with three entries each contain a vector in the following order: The result of the preliminary estimator, Newton-Raphson method and the method of scoring.
If the sampling points are not equidistant the function will return 'Please use equidistant sampling points'.
Author(s)
Nicole Hufnagel
Contacts: nicole.hufnagel@math.tu-dortmund.de
References
Y. Cheng, N. Hufnagel, H. Masuda. Estimation of ergodic square-root diffusion under high-frequency sampling. Econometrics and Statistics, Article Number: 346 (2022).
Examples
#You can make use of the function simCIR to generate the data
data <- simCIR(alpha=3,beta=1,gamma=1, n=5000, h=0.05, equi.dist=TRUE)
results <- fitCIR(data)