bns.test {yuima} | R Documentation |
Barndorff-Nielsen and Shephard's Test for the Presence of Jumps Using Bipower Variation
Description
Tests the presence of jumps using the statistic proposed in Barndorff-Nielsen and Shephard (2004,2006) for each component.
Usage
bns.test(yuima, r = rep(1, 4), type = "standard", adj = TRUE)
Arguments
yuima |
an object of |
r |
a vector of non-negative numbers or a list of vectors of non-negative numbers. Theoretically, it is necessary that |
type |
type of the test statistic to use. |
adj |
logical; if |
Details
For the i
-th component, the test statistic is equal to the i
-th component of sqrt(n)*(mpv(yuima,2)-mpv(yuima,c(1,1)))/sqrt(vartheta*mpv(yuima,r))
when type="standard"
, sqrt(n)*log(mpv(yuima,2)/mpv(yuima,c(1,1)))/sqrt(vartheta*mpv(yuima,r)/mpv(yuima,c(1,1))^2)
when type="log"
and sqrt(n)*(1-mpv(yuima,c(1,1))/mpv(yuima,2))/sqrt(vartheta*mpv(yuima,r)/mpv(yuima,c(1,1))^2)
when type="ratio"
. Here, n
is equal to the length of the i
-th component of the zoo.data
of yuima
minus 1 and vartheta
is pi^2/4+pi-5
. When adj=TRUE
, mpv(yuima,r)[i]/mpv(yuima,c(1,1))^2)[i]
is replaced with 1 if it is less than 1.
Value
A list with the same length as the zoo.data
of yuima
. Each component of the list has class “htest
” and contains the following components:
statistic |
the value of the test statistic of the corresponding component of the |
p.value |
an approximate p-value for the test of the corresponding component. |
method |
the character string “ |
data.name |
the character string “ |
Note
Theoretically, this test may be invalid if sampling is irregular.
Author(s)
Yuta Koike with YUIMA Project Team
References
Barndorff-Nielsen, O. E. and Shephard, N. (2004) Power and bipower variation with stochastic volatility and jumps, Journal of Financial Econometrics, 2, no. 1, 1–37.
Barndorff-Nielsen, O. E. and Shephard, N. (2006) Econometrics of testing for jumps in financial economics using bipower variation, Journal of Financial Econometrics, 4, no. 1, 1–30.
Huang, X. and Tauchen, G. (2005) The relative contribution of jumps to total price variance, Journal of Financial Econometrics, 3, no. 4, 456–499.
See Also
lm.jumptest
, mpv
, minrv.test
, medrv.test
, pz.test
Examples
set.seed(123)
# One-dimensional case
## Model: dXt=t*dWt+t*dzt,
## where zt is a compound Poisson process with intensity 5 and jump sizes distribution N(0,0.1).
model <- setModel(drift=0,diffusion="t",jump.coeff="t",measure.type="CP",
measure=list(intensity=5,df=list("dnorm(z,0,sqrt(0.1))")),
time.variable="t")
yuima.samp <- setSampling(Terminal = 1, n = 390)
yuima <- setYuima(model = model, sampling = yuima.samp)
yuima <- simulate(yuima)
plot(yuima) # The path seems to involve some jumps
bns.test(yuima) # standard type
bns.test(yuima,type="log") # log type
bns.test(yuima,type="ratio") # ratio type
# Multi-dimensional case
## Model: dXkt=t*dWk_t (k=1,2,3) (no jump case).
diff.matrix <- diag(3)
diag(diff.matrix) <- c("t","t","t")
model <- setModel(drift=c(0,0,0),diffusion=diff.matrix,time.variable="t",
solve.variable=c("x1","x2","x3"))
yuima.samp <- setSampling(Terminal = 1, n = 390)
yuima <- setYuima(model = model, sampling = yuima.samp)
yuima <- simulate(yuima)
plot(yuima)
bns.test(yuima)