adaBayes {yuima} | R Documentation |
Adaptive Bayes estimator for the parameters in sde model
Description
The adabayes.mcmc
class is a class of the yuima package that extends the mle-class
.
Usage
adaBayes(yuima, start, prior, lower, upper, method = "mcmc", iteration = NULL,mcmc,
rate =1, rcpp = TRUE, algorithm = "randomwalk",center=NULL,sd=NULL,rho=NULL,
path = FALSE)
Arguments
yuima |
a 'yuima' object. |
start |
initial suggestion for parameter values |
prior |
a list of prior distributions for the parameters specified by 'code'. Currently, dunif(z, min, max), dnorm(z, mean, sd), dbeta(z, shape1, shape2), dgamma(z, shape, rate) are available. |
lower |
a named list for specifying lower bounds of parameters |
upper |
a named list for specifying upper bounds of parameters |
method |
|
iteration |
number of iteration of Markov chain Monte Carlo method |
mcmc |
number of iteration of Markov chain Monte Carlo method |
rate |
a thinning parameter. Only the first n^rate observation will be used for inference. |
rcpp |
Logical value. If |
algorithm |
If |
center |
A list of parameters used to center MpCN algorithm. |
sd |
A list for specifying the standard deviation of proposal distributions. |
path |
Logical value when |
rho |
A parameter used for MpCN algorithm. |
Details
Calculate the Bayes estimator for stochastic processes by using the quasi-likelihood function. The calculation is performed by the Markov chain Monte Carlo method. Currently, the Random-walk Metropolis algorithm and the Mixed preconditioned Crank-Nicolson algorithm is implemented.
Slots
mcmc
:is a list of MCMC objects for all estimated parameters.
accept_rate
:is a list acceptance rates for diffusion and drift parts.
call
:is an object of class
language
.fullcoef
:is an object of class
list
that contains estimated parameters.vcov
:is an object of class
matrix
.coefficients
:is an object of class
vector
that contains estimated parameters.
Note
algorithm = nomcmc
is unstable.
Author(s)
Kengo Kamatani with YUIMA project Team
References
Yoshida, N. (2011). Polynomial type large deviation inequalities and quasi-likelihood analysis for stochastic differential equations. Annals of the Institute of Statistical Mathematics, 63(3), 431-479. Uchida, M., & Yoshida, N. (2014). Adaptive Bayes type estimators of ergodic diffusion processes from discrete observations. Statistical Inference for Stochastic Processes, 17(2), 181-219. Kamatani, K. (2017). Ergodicity of Markov chain Monte Carlo with reversible proposal. Journal of Applied Probability, 54(2).
Examples
## Not run:
set.seed(123)
b <- c("-theta1*x1+theta2*sin(x2)+50","-theta3*x2+theta4*cos(x1)+25")
a <- matrix(c("4+theta5","1","1","2+theta6"),2,2)
true = list(theta1 = 0.5, theta2 = 5,theta3 = 0.3,
theta4 = 5, theta5 = 1, theta6 = 1)
lower = list(theta1=0.1,theta2=0.1,theta3=0,
theta4=0.1,theta5=0.1,theta6=0.1)
upper = list(theta1=1,theta2=10,theta3=0.9,
theta4=10,theta5=10,theta6=10)
start = list(theta1=runif(1),
theta2=rnorm(1),
theta3=rbeta(1,1,1),
theta4=rnorm(1),
theta5=rgamma(1,1,1),
theta6=rexp(1))
yuimamodel <- setModel(drift=b,diffusion=a,state.variable=c("x1", "x2"),solve.variable=c("x1","x2"))
yuimasamp <- setSampling(Terminal=50,n=50*10)
yuima <- setYuima(model = yuimamodel, sampling = yuimasamp)
yuima <- simulate(yuima, xinit = c(100,80),
true.parameter = true,sampling = yuimasamp)
prior <-
list(
theta1=list(measure.type="code",df="dunif(z,0,1)"),
theta2=list(measure.type="code",df="dnorm(z,0,1)"),
theta3=list(measure.type="code",df="dbeta(z,1,1)"),
theta4=list(measure.type="code",df="dgamma(z,1,1)"),
theta5=list(measure.type="code",df="dnorm(z,0,1)"),
theta6=list(measure.type="code",df="dnorm(z,0,1)")
)
set.seed(123)
mle <- qmle(yuima, start = start, lower = lower, upper = upper, method = "L-BFGS-B",rcpp=TRUE)
print(mle@coef)
center<-list(theta1=0.5,theta2=5,theta3=0.3,theta4=4,theta5=3,theta6=3)
sd<-list(theta1=0.001,theta2=0.001,theta3=0.001,theta4=0.01,theta5=0.5,theta6=0.5)
bayes <- adaBayes(yuima, start=start, prior=prior,lower=lower,upper=upper,
method="mcmc",mcmc=1000,rate = 1, rcpp = TRUE,
algorithm = "randomwalk",center = center,sd=sd,
path=TRUE)
print(bayes@fullcoef)
print(bayes@accept_rate)
print(bayes@mcmc$theta1[1:10])
## End(Not run)