EstimCarmaHawkes {yuima} | R Documentation |
Estimation Methods for a CARMA(p,q)-Hawkes Counting Process
Description
The function provides two estimation procedures: Maximum Likelihood Estimation and Matching Empirical Correlation
Usage
EstimCarmaHawkes(yuima, start, est.method = "qmle", method = "BFGS",
lower = NULL, upper = NULL, lags = NULL, display = FALSE)
Arguments
yuima |
a yuima object. |
start |
initial values to be passed to the optimizer. |
est.method |
The method used to estimate the parameters. The default |
method |
The optimization method to be used. See |
lower |
Lower Bounds. |
upper |
Upper Bounds. |
lags |
Number of lags used in the autocorrelation. |
display |
you can see a progress of the estimation when |
Value
The output contains the estimated parameters.
Author(s)
The YUIMA Project Team
Contacts: Lorenzo Mercuri lorenzo.mercuri@unimi.it
References
Mercuri, L., Perchiazzo, A., & Rroji, E. (2022). A Hawkes model with CARMA (p, q) intensity. doi:10.48550/arXiv.2208.02659.
Examples
## Not run:
## MLE For A CARMA(2,1)-Hawkes ##
# Inputs:
a <- c(3,2)
b <- c(1,0.3)
mu<-0.30
true.par<-c(mu,a,b)
# step 1) Model Definition => Constructor 'setCarmaHawkes'
p <- 2
q <- 1
mod1 <- setCarmaHawkes(p = p,q = q)
# step 2) Grid Construction => Constructor 'setSampling'
FinalTime <- 5000
t0 <- 0
samp <- setSampling(t0, FinalTime, n = FinalTime)
# step 3) Simulation => method 'simulate'
# We use method 'simulate' to generate our dataset.
# For the estimation from real data,
# we use the constructors 'setData' and
#'setYuima' (input 'model' is an object of
# 'yuima.CarmaHawkes-class').
names(true.par) <- c(mod1@info@base.Int, mod1@info@ar.par, mod1@info@ma.par)
set.seed(1)
system.time(
sim1 <- simulate(object = mod1, true.parameter = true.par,
sampling = samp)
)
plot(sim1)
# step 4) Estimation using the likelihood function.
system.time(
res <- EstimCarmaHawkes(yuima = sim1,
start = true.par)
)
## End(Not run)