Diagnostic.Cogarch {yuima} | R Documentation |
Function for checking the statistical properties of the COGARCH(p,q) model
Description
The function check the statistical properties of the COGARCH(p,q) model. We verify if the process has a strict positive stationary variance model.
Usage
Diagnostic.Cogarch(yuima.cogarch, param = list(), matrixS = NULL, mu = 1, display = TRUE)
Arguments
yuima.cogarch |
an object of class |
param |
a list containing the values of the parameters |
matrixS |
a Square matrix. |
mu |
first moment of the Levy measure. |
display |
a logical variable, if |
Value
The functon returns a List with entries:
meanVarianceProc |
Unconditional Stationary mean of the variance process. |
meanStateVariable |
Unconditional Stationary mean of the state process. |
stationary |
If |
positivity |
If |
Author(s)
YUIMA Project Team
Examples
## Not run:
# Definition of the COGARCH(1,1) process driven by a Variance Gamma nois:
param.VG <- list(a1 = 0.038, b1 = 0.053,
a0 = 0.04/0.053,lambda = 1, alpha = sqrt(2), beta = 0, mu = 0,
x01 = 50.33)
cog.VG <- setCogarch(p = 1, q = 1, work = FALSE,
measure=list(df="rvgamma(z, lambda, alpha, beta, mu)"),
measure.type = "code",
Cogarch.var = "y",
V.var = "v", Latent.var="x",
XinExpr=TRUE)
# Verify the stationarity and the positivity of th variance process
test <- Diagnostic.Cogarch(cog.VG,param=param.VG)
show(test)
# Simulate a sample path
set.seed(210)
Term=800
num=24000
samp.VG <- setSampling(Terminal=Term, n=num)
sim.VG <- simulate(cog.VG,
true.parameter=param.VG,
sampling=samp.VG,
method="euler")
plot(sim.VG)
# Estimate the model
res.VG <- gmm(sim.VG, start = param.VG, Est.Incr = "IncrPar")
summary(res.VG)
# Check if the estimated COGARCH(1,1) has a positive and stationary variance
test1<-Diagnostic.Cogarch(res.VG)
show(test1)
# Simulate a COGARCH sample path using the estimated COGARCH(1,1)
# and the recovered increments of underlying Variance Gamma Noise
esttraj<-simulate(res.VG)
plot(esttraj)
## End(Not run)
[Package yuima version 1.15.27 Index]