CarmaNoise {yuima} | R Documentation |
Estimation for the underlying Levy in a carma model
Description
Retrieve the increment of the underlying Levy for the carma(p,q) process using the approach developed in Brockwell et al.(2011)
Usage
CarmaNoise(yuima, param, data=NULL, NoNeg.Noise=FALSE)
Arguments
yuima |
a yuima object or an object of |
param |
|
data |
an object of class |
NoNeg.Noise |
Estimate a non-negative Levy-Driven Carma process. By default |
Value
incr.Levy |
a numeric object contains the estimated increments. |
Note
The function qmle
uses the function CarmaNoise
for estimation of underlying Levy in the carma model.
Author(s)
The YUIMA Project Team
References
Brockwell, P., Davis, A. R. and Yang. Y. (2011) Estimation for Non-Negative Levy-Driven CARMA Process, Journal of Business And Economic Statistics, 29 - 2, 250-259.
Examples
## Not run:
#Ex.1: Carma(p=3, q=0) process driven by a brownian motion.
mod0<-setCarma(p=3,q=0)
# We fix the autoregressive and moving average parameters
# to ensure the existence of a second order stationary solution for the process.
true.parm0 <-list(a1=4,a2=4.75,a3=1.5,b0=1)
# We simulate a trajectory of the Carma model.
numb.sim<-1000
samp0<-setSampling(Terminal=100,n=numb.sim)
set.seed(100)
incr.W<-matrix(rnorm(n=numb.sim,mean=0,sd=sqrt(100/numb.sim)),1,numb.sim)
sim0<-simulate(mod0,
true.parameter=true.parm0,
sampling=samp0, increment.W=incr.W)
#Applying the CarmaNoise
system.time(
inc.Levy0<-CarmaNoise(sim0,true.parm0)
)
# We compare the orginal with the estimated noise increments
par(mfrow=c(1,2))
plot(t(incr.W)[1:998],type="l", ylab="",xlab="time")
title(main="True Brownian Motion",font.main="1")
plot(inc.Levy0,type="l", main="Filtered Brownian Motion",font.main="1",ylab="",xlab="time")
# Ex.2: carma(2,1) driven by a compound poisson
# where jump size is normally distributed and
# the lambda is equal to 1.
mod1<-setCarma(p=2,
q=1,
measure=list(intensity="Lamb",df=list("dnorm(z, 0, 1)")),
measure.type="CP")
true.parm1 <-list(a1=1.39631, a2=0.05029,
b0=1,b1=2,
Lamb=1)
# We generate a sample path.
samp1<-setSampling(Terminal=100,n=200)
set.seed(123)
sim1<-simulate(mod1,
true.parameter=true.parm1,
sampling=samp1)
# We estimate the parameter using qmle.
carmaopt1 <- qmle(sim1, start=true.parm1)
summary(carmaopt1)
# Internally qmle uses CarmaNoise. The result is in
plot(carmaopt1)
# Ex.3: Carma(p=2,q=1) with scale and location parameters
# driven by a Compound Poisson
# with jump size normally distributed.
mod2<-setCarma(p=2,
q=1,
loc.par="mu",
scale.par="sig",
measure=list(intensity="Lamb",df=list("dnorm(z, 0, 1)")),
measure.type="CP")
true.parm2 <-list(a1=1.39631,
a2=0.05029,
b0=1,
b1=2,
Lamb=1,
mu=0.5,
sig=0.23)
# We simulate the sample path
set.seed(123)
sim2<-simulate(mod2,
true.parameter=true.parm2,
sampling=samp1)
# We estimate the Carma and we plot the underlying noise.
carmaopt2 <- qmle(sim2, start=true.parm2)
summary(carmaopt2)
# Increments estimated by CarmaNoise
plot(carmaopt2)
## End(Not run)