posterior {yodel} | R Documentation |
Calculate Posterior Quantities
Description
Calculate posterior quantities specifically of interest for a given model.
Usage
posterior(x, ...)
Arguments
x |
MCMC output. |
... |
additional arguments passed to S3 methods. |
Value
a dataframe or tibble with the posterior probabilities.
Examples
# functions which caclulate the dose response for a linear and quadratic model
fun_linear <- function(x, dose) {
mean_response <- x$b1 + x$b2 * dose
data.frame(iter = 1:nrow(x), dose = dose, mean = mean_response)
}
fun_quad <- function(x, dose) {
mean_response <- x$b1 + x$b2 * dose + x$b3 * dose ^ 2
data.frame(iter = 1:nrow(x), dose = dose, mean = mean_response)
}
# Bayesian model averaging
fit <- bma(
linear = model_bma_predictive(
mcmc = data.frame(b1 = 1:5, b2 = 11:15, sigma = seq(.1, .5, .1)),
log_post_pred = matrix(log(1:100), 5, 20),
adjustment = - 3 / 2,
w_prior = .5,
fun = fun_linear
),
quad = model_bma_predictive(
mcmc = data.frame(b1 = 1:5 / 2, b2 = 11:15 / 2, b3 = 5:1, sigma = seq(.1, .5, .1)),
log_post_pred = matrix(log(2:101), 5, 20),
adjustment = - 4 / 2,
w_prior = .5,
fun = fun_quad
)
)
# posterior samples using Bayesian model averaging
posterior(fit, dose = 1)
posterior(fit, dose = 2)
[Package yodel version 1.0.0 Index]