| mae {yardstick} | R Documentation | 
Mean absolute error
Description
Calculate the mean absolute error. This metric is in the same units as the original data.
Usage
mae(data, ...)
## S3 method for class 'data.frame'
mae(data, truth, estimate, na_rm = TRUE, case_weights = NULL, ...)
mae_vec(truth, estimate, na_rm = TRUE, case_weights = NULL, ...)
Arguments
| data | A  | 
| ... | Not currently used. | 
| truth | The column identifier for the true results
(that is  | 
| estimate | The column identifier for the predicted
results (that is also  | 
| na_rm | A  | 
| case_weights | The optional column identifier for case weights. This
should be an unquoted column name that evaluates to a numeric column in
 | 
Value
A tibble with columns .metric, .estimator,
and .estimate and 1 row of values.
For grouped data frames, the number of rows returned will be the same as the number of groups.
For mae_vec(), a single numeric value (or NA).
Author(s)
Max Kuhn
See Also
Other numeric metrics: 
ccc(),
huber_loss_pseudo(),
huber_loss(),
iic(),
mape(),
mase(),
mpe(),
msd(),
poisson_log_loss(),
rmse(),
rpd(),
rpiq(),
rsq_trad(),
rsq(),
smape()
Other accuracy metrics: 
ccc(),
huber_loss_pseudo(),
huber_loss(),
iic(),
mape(),
mase(),
mpe(),
msd(),
poisson_log_loss(),
rmse(),
smape()
Examples
# Supply truth and predictions as bare column names
mae(solubility_test, solubility, prediction)
library(dplyr)
set.seed(1234)
size <- 100
times <- 10
# create 10 resamples
solubility_resampled <- bind_rows(
  replicate(
    n = times,
    expr = sample_n(solubility_test, size, replace = TRUE),
    simplify = FALSE
  ),
  .id = "resample"
)
# Compute the metric by group
metric_results <- solubility_resampled %>%
  group_by(resample) %>%
  mae(solubility, prediction)
metric_results
# Resampled mean estimate
metric_results %>%
  summarise(avg_estimate = mean(.estimate))