bal_accuracy {yardstick} | R Documentation |
Balanced accuracy
Description
Balanced accuracy is computed here as the average of sens()
and spec()
.
Usage
bal_accuracy(data, ...)
## S3 method for class 'data.frame'
bal_accuracy(
data,
truth,
estimate,
estimator = NULL,
na_rm = TRUE,
case_weights = NULL,
event_level = yardstick_event_level(),
...
)
bal_accuracy_vec(
truth,
estimate,
estimator = NULL,
na_rm = TRUE,
case_weights = NULL,
event_level = yardstick_event_level(),
...
)
Arguments
data |
Either a |
... |
Not currently used. |
truth |
The column identifier for the true class results
(that is a |
estimate |
The column identifier for the predicted class
results (that is also |
estimator |
One of: |
na_rm |
A |
case_weights |
The optional column identifier for case weights.
This should be an unquoted column name that evaluates to a numeric column
in |
event_level |
A single string. Either |
Value
A tibble
with columns .metric
, .estimator
,
and .estimate
and 1 row of values.
For grouped data frames, the number of rows returned will be the same as the number of groups.
For bal_accuracy_vec()
, a single numeric
value (or NA
).
Relevant Level
There is no common convention on which factor level should
automatically be considered the "event" or "positive" result
when computing binary classification metrics. In yardstick
, the default
is to use the first level. To alter this, change the argument
event_level
to "second"
to consider the last level of the factor the
level of interest. For multiclass extensions involving one-vs-all
comparisons (such as macro averaging), this option is ignored and
the "one" level is always the relevant result.
Multiclass
Macro, micro, and macro-weighted averaging is available for this metric.
The default is to select macro averaging if a truth
factor with more
than 2 levels is provided. Otherwise, a standard binary calculation is done.
See vignette("multiclass", "yardstick")
for more information.
Author(s)
Max Kuhn
See Also
Other class metrics:
accuracy()
,
detection_prevalence()
,
f_meas()
,
j_index()
,
kap()
,
mcc()
,
npv()
,
ppv()
,
precision()
,
recall()
,
sens()
,
spec()
Examples
# Two class
data("two_class_example")
bal_accuracy(two_class_example, truth, predicted)
# Multiclass
library(dplyr)
data(hpc_cv)
hpc_cv %>%
filter(Resample == "Fold01") %>%
bal_accuracy(obs, pred)
# Groups are respected
hpc_cv %>%
group_by(Resample) %>%
bal_accuracy(obs, pred)
# Weighted macro averaging
hpc_cv %>%
group_by(Resample) %>%
bal_accuracy(obs, pred, estimator = "macro_weighted")
# Vector version
bal_accuracy_vec(
two_class_example$truth,
two_class_example$predicted
)
# Making Class2 the "relevant" level
bal_accuracy_vec(
two_class_example$truth,
two_class_example$predicted,
event_level = "second"
)