average_precision {yardstick} | R Documentation |
Area under the precision recall curve
Description
average_precision()
is an alternative to pr_auc()
that avoids any
ambiguity about what the value of precision
should be when recall == 0
and there are not yet any false positive values (some say it should be 0
,
others say 1
, others say undefined).
It computes a weighted average of the precision values returned from
pr_curve()
, where the weights are the increase in recall from the previous
threshold. See pr_curve()
for the full curve.
Usage
average_precision(data, ...)
## S3 method for class 'data.frame'
average_precision(
data,
truth,
...,
estimator = NULL,
na_rm = TRUE,
event_level = yardstick_event_level(),
case_weights = NULL
)
average_precision_vec(
truth,
estimate,
estimator = NULL,
na_rm = TRUE,
event_level = yardstick_event_level(),
case_weights = NULL,
...
)
Arguments
data |
A |
... |
A set of unquoted column names or one or more
|
truth |
The column identifier for the true class results
(that is a |
estimator |
One of |
na_rm |
A |
event_level |
A single string. Either |
case_weights |
The optional column identifier for case weights.
This should be an unquoted column name that evaluates to a numeric column
in |
estimate |
If |
Details
The computation for average precision is a weighted average of the precision
values. Assuming you have n
rows returned from pr_curve()
, it is a sum
from 2
to n
, multiplying the precision value p_i
by the increase in
recall over the previous threshold, r_i - r_(i-1)
.
AP = \sum (r_{i} - r_{i-1}) * p_i
By summing from 2
to n
, the precision value p_1
is never used. While
pr_curve()
returns a value for p_1
, it is technically undefined as
tp / (tp + fp)
with tp = 0
and fp = 0
. A common convention is to use
1
for p_1
, but this metric has the nice property of avoiding the
ambiguity. On the other hand, r_1
is well defined as long as there are
some events (p
), and it is tp / p
with tp = 0
, so r_1 = 0
.
When p_1
is defined as 1
, the average_precision()
and roc_auc()
values are often very close to one another.
Value
A tibble
with columns .metric
, .estimator
,
and .estimate
and 1 row of values.
For grouped data frames, the number of rows returned will be the same as the number of groups.
For average_precision_vec()
, a single numeric
value (or NA
).
Multiclass
Macro and macro-weighted averaging is available for this metric.
The default is to select macro averaging if a truth
factor with more
than 2 levels is provided. Otherwise, a standard binary calculation is done.
See vignette("multiclass", "yardstick")
for more information.
Relevant Level
There is no common convention on which factor level should
automatically be considered the "event" or "positive" result
when computing binary classification metrics. In yardstick
, the default
is to use the first level. To alter this, change the argument
event_level
to "second"
to consider the last level of the factor the
level of interest. For multiclass extensions involving one-vs-all
comparisons (such as macro averaging), this option is ignored and
the "one" level is always the relevant result.
See Also
pr_curve()
for computing the full precision recall curve.
pr_auc()
for computing the area under the precision recall curve using
the trapezoidal rule.
Other class probability metrics:
brier_class()
,
classification_cost()
,
gain_capture()
,
mn_log_loss()
,
pr_auc()
,
roc_auc()
,
roc_aunp()
,
roc_aunu()
Examples
# ---------------------------------------------------------------------------
# Two class example
# `truth` is a 2 level factor. The first level is `"Class1"`, which is the
# "event of interest" by default in yardstick. See the Relevant Level
# section above.
data(two_class_example)
# Binary metrics using class probabilities take a factor `truth` column,
# and a single class probability column containing the probabilities of
# the event of interest. Here, since `"Class1"` is the first level of
# `"truth"`, it is the event of interest and we pass in probabilities for it.
average_precision(two_class_example, truth, Class1)
# ---------------------------------------------------------------------------
# Multiclass example
# `obs` is a 4 level factor. The first level is `"VF"`, which is the
# "event of interest" by default in yardstick. See the Relevant Level
# section above.
data(hpc_cv)
# You can use the col1:colN tidyselect syntax
library(dplyr)
hpc_cv %>%
filter(Resample == "Fold01") %>%
average_precision(obs, VF:L)
# Change the first level of `obs` from `"VF"` to `"M"` to alter the
# event of interest. The class probability columns should be supplied
# in the same order as the levels.
hpc_cv %>%
filter(Resample == "Fold01") %>%
mutate(obs = relevel(obs, "M")) %>%
average_precision(obs, M, VF:L)
# Groups are respected
hpc_cv %>%
group_by(Resample) %>%
average_precision(obs, VF:L)
# Weighted macro averaging
hpc_cv %>%
group_by(Resample) %>%
average_precision(obs, VF:L, estimator = "macro_weighted")
# Vector version
# Supply a matrix of class probabilities
fold1 <- hpc_cv %>%
filter(Resample == "Fold01")
average_precision_vec(
truth = fold1$obs,
matrix(
c(fold1$VF, fold1$F, fold1$M, fold1$L),
ncol = 4
)
)