Yet Another General Regression Neural Network


[Up] [Top]

Documentation for package ‘yager’ version 0.1.1

Help Pages

folds Generate a list of index for the n-fold cross-validation
gen_latin Generate random numbers of latin hypercube sampling
gen_sobol Generate sobol sequence
gen_unifm Generate Uniform random numbers
grnn.fit Create a general regression neural network
grnn.imp Derive the importance rank of all predictors used in the GRNN
grnn.margin Derive the marginal effect of a predictor used in a GRNN
grnn.optmiz_auc Optimize the optimal value of GRNN smoothing parameter based on AUC
grnn.parpred Calculate predicted values of GRNN by using parallelism
grnn.partial Derive the partial effect of a predictor used in a GRNN
grnn.pfi Derive the PFI rank of all predictors used in the GRNN
grnn.predict Calculate predicted values of GRNN
grnn.predone Calculate a predicted value of GRNN
grnn.search_auc Search for the optimal value of GRNN smoothing parameter based on AUC
grnn.search_rsq Search for the optimal value of GRNN smoothing parameter based on r-square
grnn.x_imp Derive the importance of a predictor used in the GRNN
grnn.x_pfi Derive the permutation feature importance of a predictor used in the GRNN