folds |
Generate a list of index for the n-fold cross-validation |
gen_latin |
Generate random numbers of latin hypercube sampling |
gen_sobol |
Generate sobol sequence |
gen_unifm |
Generate Uniform random numbers |
grnn.fit |
Create a general regression neural network |
grnn.imp |
Derive the importance rank of all predictors used in the GRNN |
grnn.margin |
Derive the marginal effect of a predictor used in a GRNN |
grnn.optmiz_auc |
Optimize the optimal value of GRNN smoothing parameter based on AUC |
grnn.parpred |
Calculate predicted values of GRNN by using parallelism |
grnn.partial |
Derive the partial effect of a predictor used in a GRNN |
grnn.pfi |
Derive the PFI rank of all predictors used in the GRNN |
grnn.predict |
Calculate predicted values of GRNN |
grnn.predone |
Calculate a predicted value of GRNN |
grnn.search_auc |
Search for the optimal value of GRNN smoothing parameter based on AUC |
grnn.search_rsq |
Search for the optimal value of GRNN smoothing parameter based on r-square |
grnn.x_imp |
Derive the importance of a predictor used in the GRNN |
grnn.x_pfi |
Derive the permutation feature importance of a predictor used in the GRNN |