xd_index {xxdi} | R Documentation |
xd_index
Description
This is a standalone function that specifically calculates the xd-index for an institution using bibliometric data from an edge list, with an optional plot visualisation. The function is suitable for including inside loops when plotting parameter is set to "FALSE" or "F".
Usage
xd_index(df, cat, id, cit, dlm = ";", plot = FALSE)
Arguments
df |
Data frame object containing bibliometric data. This data frame must have at least three columns: one for categories, one for unique IDs, and one for citation counts. Each row in the data frame should represent a document or publication. |
cat |
Character string specifying the name of the column in "df" that contains categories. Each cell in this column may contain no categories (missing), a single category or multiple categories separated by a specified delimiter. |
id |
Character string specifying the name of the column in "df" that contains unique identifiers for each document. Each cell in this column must contain a single ID (unless missing) and not multiple IDs. |
cit |
Character string specifying the name of the column in "df" that contains the number of citations each document has received. Citations must be represented as integers. Each cell in this column should contain a single integer value (unless missing) representing the citation count for the corresponding document. |
dlm |
Character string specifying the delimiter used in the "cat" column to separate multiple categories within a single cell. The delimiter should be consistent across the entire "cat" column. Common delimiters include ";", "/", ":", and ",". The default delimiter is set to ";". |
plot |
Logical value indicating whether to generate and display a plot of the xd-index calculation. Set to "TRUE" or "T" to generate the plot, and "FALSE" or "F" to skip plot generation. The default is "FALSE". |
Value
xd-index value and plot for institution.
Examples
# Create an example data frame
dat1 <- data.frame(citations = c(0, 1, 1, 2, 3, 5, 8),
keywords = c("a; b; c", "b; d", "c", "d", "e; g", "f", "g"),
id = c("abc123", "bcd234", "def345", "efg456", "fgh567", "ghi678", "hij789"),
categories = c("a; d; e", "b", "c", "d; g", "e", "f", "g"))
# Calculate xd-index
xd_index(df = dat1, cat = "categories", id = "id", cit = "citations")
# Create another example data frame
dat2 <- data.frame(citations = c(0, 1, 1, 2, 3, 5, 8),
keywords = c("a/ b/ c", "b/ d", "c", "d", "e/ g", "f", "g"),
id = c("123", "234", "345", "456", "567", "678", "789"),
categories = c("a/ d/ e", "b", "c", "d/ g", "e", "f", "g"))
# Calculate xd-index
xd_index(df = dat2, cat = "categories", id = "id", cit = "citations", dlm = "/", plot = FALSE)
# Create another example data frame
dat3 <- data.frame(citations = c(0, 1, 1, 2, 3, 5, 8),
keywords = c("a, b, c", "b, d", "c", "d", "e, g", "f", "g"),
id = c(123, 234, 345, 456, 567, 678, 789),
categories = c("a: d: e", "b", "c", "d: g", "e", "f", "g"))
# Calculate xd-index and produce plot
xd_index(df = dat3, cat = "categories", id = "id", cit = "citations", dlm = ":", plot = TRUE)