model_grm {xxIRT} | R Documentation |
Graded Response Model
Description
Routine functions for the GRM
Usage
model_grm_prob(t, a, b, D = 1.702, raw = FALSE)
model_grm_info(t, a, b, D = 1.702)
model_grm_lh(u, t, a, b, D = 1.702, log = FALSE)
model_grm_gendata(n_p, n_i, n_c, t = NULL, a = NULL, b = NULL,
D = 1.702, t_dist = c(0, 1), a_dist = c(-0.1, 0.2), b_dist = c(0,
0.8), missing = NULL)
model_grm_rescale(t, a, b, param = c("t", "b"), mean = 0, sd = 1)
model_grm_plot(a, b, D = 1.702, type = c("prob", "info"),
by_item = FALSE, total = FALSE, xaxis = seq(-6, 6, 0.1),
raw = FALSE)
model_grm_plot_loglh(u, a, b, D = 1.702, xaxis = seq(-6, 6, 0.1),
show_mle = FALSE)
Arguments
t |
ability parameters, 1d vector |
a |
discrimination parameters, 1d vector |
b |
item location parameters, 2d matrix |
D |
the scaling constant, 1.702 by default |
raw |
TRUE to return P* |
u |
the observed scores (starting from 0), 2d matrix |
log |
TRUE to return log-likelihood |
n_p |
the number of people to be generated |
n_i |
the number of items to be generated |
n_c |
the number of score categories |
t_dist |
parameters of the normal distribution used to generate t-parameters |
a_dist |
parameters of the lognormal distribution used to generate a-parameters |
b_dist |
parameters of the normal distribution used to generate b-parameters |
missing |
the proportion or number of missing responses |
param |
the parameter of the new scale: 't' or 'b' |
mean |
the mean of the new scale |
sd |
the standard deviation of the new scale |
type |
the type of plot, prob for ICC and info for IIFC |
by_item |
TRUE to combine categories |
total |
TRUE to sum values over items |
xaxis |
the values of x-axis |
show_mle |
TRUE to print maximum likelihood values |
Examples
with(model_grm_gendata(10, 5, 3), model_grm_prob(t, a, b))
with(model_grm_gendata(10, 5, 3), model_grm_info(t, a, b))
with(model_grm_gendata(10, 5, 3), model_grm_lh(u, t, a, b))
model_grm_gendata(10, 5, 3)
model_grm_gendata(10, 5, 3, missing=.1)
with(model_grm_gendata(10, 5, 3), model_grm_plot(a, b, type='prob'))
with(model_grm_gendata(10, 5, 3), model_grm_plot(a, b, type='info', by_item=TRUE))
with(model_grm_gendata(5, 50, 3), model_grm_plot_loglh(u, a, b))