xpose.VPC {xpose4} | R Documentation |
Visual Predictive Check (VPC) using XPOSE
Description
This Function is used to create a VPC in xpose using the output from the
vpc
command in Pearl Speaks NONMEM (PsN). The function reads in the
output files created by PsN and creates a plot from the data. The dependent
variable, independent variable and conditioning variable are automatically
determined from the PsN files.
Usage
xpose.VPC(
vpc.info = "vpc_results.csv",
vpctab = dir(pattern = "^vpctab")[1],
object = NULL,
ids = FALSE,
type = "p",
by = NULL,
PI = NULL,
PI.ci = "area",
PI.ci.area.smooth = FALSE,
PI.real = TRUE,
subset = NULL,
main = "Default",
main.sub = NULL,
main.sub.cex = 0.85,
inclZeroWRES = FALSE,
force.x.continuous = FALSE,
funy = NULL,
logy = FALSE,
ylb = "Default",
verbose = FALSE,
PI.x.median = TRUE,
PI.rug = "Default",
PI.identify.outliers = TRUE,
...
)
Arguments
vpc.info |
The results file from the |
vpctab |
The ‘vpctab’ from the |
object |
An xpose data object. Created from |
ids |
A logical value indicating whether text ID labels should be used
as plotting symbols (the variable used for these symbols indicated by the
|
type |
Character string describing the way the points in the plot will
be displayed. For more details, see |
by |
A string or a vector of strings with the name(s) of the
conditioning variables. For example |
PI |
Either "lines", "area" or "both" specifying whether prediction
intervals (as lines, a shaded area or both) should be added to the plot.
|
PI.ci |
Plot the confidence interval for the simulated data's
percentiles for each bin (for each simulated data set compute the
percentiles for each bin, then, from all of the percentiles from all of the
simulated datasets compute the 95% CI of these percentiles). Values can be
|
PI.ci.area.smooth |
Should the "area" for |
PI.real |
Plot the percentiles of the real data in the various bins. values can be NULL or TRUE. Note that for a bin with few actual observations the percentiles will be approximate. For example, the 95th percentile of 4 data points will always be the largest of the 4 data points. |
subset |
A string giving the subset expression to be applied to the data
before plotting. See |
main |
A string giving the plot title or |
main.sub |
Used for names above each plot when using multiple plots.
Should be a vector |
main.sub.cex |
The size of the |
inclZeroWRES |
Logical value indicating whether rows with WRES=0 is included in the plot. |
force.x.continuous |
Logical value indicating whether x-values should be converted to continuous variables, even if they are defined as factors. |
funy |
String of function to apply to Y data. For example "abs" |
logy |
Logical value indicating whether the y-axis should be logarithmic, base 10. |
ylb |
Label for the y-axis |
verbose |
Should warning messages and other diagnostic information be passed to screen? (TRUE or FALSE) |
PI.x.median |
Should the x-location of percentile lines in a bin be
marked at the median of the x-values? ( |
PI.rug |
Should there be markings on the plot showing where the binning intervals for the VPC are (or the locations of the independent variable used for each VPC calculation if binning is not used)? |
PI.identify.outliers |
Should outlying percentiles of the real data be highlighted? (TRUE of FALSE) |
... |
Other arguments passed to |
Value
A plot or a list of plots.
Additional arguments
Below are some of the additional arguments that can control the look and
feel of the VPC. See
xpose.panel.default
for all potential options.
Additional graphical elements available in the VPC plots.
- PI.mirror = NULL, TRUE or AN.INTEGER.VALUE
Plot the percentiles of one simulated data set in each bin.
TRUE
takes the first mirror from ‘vpc_results.csv’ andAN.INTEGER.VALUE
can be1, 2, ...{} n
wheren
is the number of mirror's output in the ‘vpc_results.csv’ file.- PI.limits = c(0.025, 0.975)
A vector of two values that describe the limits of the prediction interval that should be displayed. These limits should be found in the ‘vpc_results.csv’ file. These limits are also used as the percentages for the
PI.real, PI.mirror
andPI.ci
. However, the confidence interval inPI.ci
is always the one defined in the ‘vpc_results.csv’ file.
Additional options to control the look and feel of the PI
.
See See grid.polygon
and plot
for more details.
- PI.arcol
The color of the
PI
area- PI.up.lty
The upper line type. can be "dotted" or "dashed", etc.
- PI.up.type
The upper type used for plotting. Defaults to a line.
- PI.up.col
The upper line color
- PI.up.lwd
The upper line width
- PI.down.lty
The lower line type. can be "dotted" or "dashed", etc.
- PI.down.type
The lower type used for plotting. Defaults to a line.
- PI.down.col
The lower line color
- PI.down.lwd
The lower line width
- PI.med.lty
The median line type. can be "dotted" or "dashed", etc.
- PI.med.type
The median type used for plotting. Defaults to a line.
- PI.med.col
The median line color
- PI.med.lwd
The median line width
Additional options to control the look and feel of the
PI.ci
. See See grid.polygon
and
plot
for more details.
- PI.ci.up.arcol
The color of the upper
PI.ci
.- PI.ci.med.arcol
The color of the median
PI.ci
.- PI.ci.down.arcol
The color of the lower
PI.ci
.- PI.ci.up.lty
The upper line type. can be "dotted" or "dashed", etc.
- PI.ci.up.type
The upper type used for plotting. Defaults to a line.
- PI.ci.up.col
The upper line color
- PI.ci.up.lwd
The upper line width
- PI.ci.down.lty
The lower line type. can be "dotted" or "dashed", etc.
- PI.ci.down.type
The lower type used for plotting. Defaults to a line.
- PI.ci.down.col
The lower line color
- PI.ci.down.lwd
The lower line width
- PI.ci.med.lty
The median line type. can be "dotted" or "dashed", etc.
- PI.ci.med.type
The median type used for plotting. Defaults to a line.
- PI.ci.med.col
The median line color
- PI.ci.med.lwd
The median line width
- PI.ci.area.smooth
Should the "area" for
PI.ci
be smoothed to match the "lines" argument? Allowed values areTRUE/FALSE
. The "area" is set by default to show the bins used in thePI.ci
computation. By smoothing, information is lost and, in general, the confidence intervals will be smaller than they are in reality.
Additional options to control the look and feel of the
PI.real
. See See grid.polygon
and
plot
for more details.
- PI.real.up.lty
The upper line type. can be "dotted" or "dashed", etc.
- PI.real.up.type
The upper type used for plotting. Defaults to a line.
- PI.real.up.col
The upper line color
- PI.real.up.lwd
The upper line width
- PI.real.down.lty
The lower line type. can be "dotted" or "dashed", etc.
- PI.real.down.type
The lower type used for plotting. Defaults to a line.
- PI.real.down.col
The lower line color
- PI.real.down.lwd
The lower line width
- PI.real.med.lty
The median line type. can be "dotted" or "dashed", etc.
- PI.real.med.type
The median type used for plotting. Defaults to a line.
- PI.real.med.col
The median line color
- PI.real.med.lwd
The median line width
Additional options to control the look and feel of the
PI.mirror
. See See plot
for more
details.
- PI.mirror.up.lty
The upper line type. can be "dotted" or "dashed", etc.
- PI.mirror.up.type
The upper type used for plotting. Defaults to a line.
- PI.mirror.up.col
The upper line color
- PI.mirror.up.lwd
The upper line width
- PI.mirror.down.lty
The lower line type. can be "dotted" or "dashed", etc.
- PI.mirror.down.type
The lower type used for plotting. Defaults to a line.
- PI.mirror.down.col
The lower line color
- PI.mirror.down.lwd
The lower line width
- PI.mirror.med.lty
The median line type. can be "dotted" or "dashed", etc.
- PI.mirror.med.type
The median type used for plotting. Defaults to a line.
- PI.mirror.med.col
The median line color
- PI.mirror.med.lwd
The median line width
Author(s)
Andrew Hooker
See Also
read.vpctab
read.npc.vpc.results
xpose.panel.default
xpose.plot.default
Other PsN functions:
boot.hist()
,
bootscm.import()
,
npc.coverage()
,
randtest.hist()
,
read.npc.vpc.results()
,
read.vpctab()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Not run:
library(xpose4)
xpose.VPC()
## to be more clear about which files should be read in
vpc.file <- "vpc_results.csv"
vpctab <- "vpctab5"
xpose.VPC(vpc.info=vpc.file,vpctab=vpctab)
## with lines and a shaded area for the prediction intervals
xpose.VPC(vpc.file,vpctab=vpctab,PI="both")
## with the percentages of the real data
xpose.VPC(vpc.file,vpctab=vpctab,PI.real=T)
## with mirrors (if supplied in 'vpc.file')
xpose.VPC(vpc.file,vpctab=vpctab,PI.real=T,PI.mirror=5)
## with CIs
xpose.VPC(vpc.file,vpctab=vpctab,PI.real=T,PI.ci="area")
xpose.VPC(vpc.file,vpctab=vpctab,PI.real=T,PI.ci="area",PI=NULL)
## stratification (if 'vpc.file' is stratified)
cond.var <- "WT"
xpose.VPC(vpc.file,vpctab=vpctab)
xpose.VPC(vpc.file,vpctab=vpctab,by=cond.var)
xpose.VPC(vpctab=vpctab,vpc.info=vpc.file,PI="both",by=cond.var,type="n")
## with no data points in the plot
xpose.VPC(vpc.file,vpctab=vpctab,by=cond.var,PI.real=T,PI.ci="area",PI=NULL,type="n")
## with different DV and IDV, just read in new files and plot
vpc.file <- "vpc_results.csv"
vpctab <- "vpctab5"
cond.var <- "WT"
xpose.VPC(vpctab=vpctab,vpc.info=vpc.file,PI="both",by=cond.var)
xpose.VPC(vpctab=vpctab,vpc.info=vpc.file,PI="both")
## to use an xpose data object instead of vpctab
##
## In this example
## we expect to find the required NONMEM run and table files for run
## 5 in the current working directory
runnumber <- 5
xpdb <- xpose.data(runnumber)
xpose.VPC(vpc.file,object=xpdb)
## to read files in a directory different than the current working directory
vpc.file <- "./vpc_strat_WT_4_mirror_5/vpc_results.csv"
vpctab <- "./vpc_strat_WT_4_mirror_5/vpctab5"
xpose.VPC(vpc.info=vpc.file,vpctab=vpctab)
## to rearrange order of factors in VPC plot
xpdb@Data$SEX <- factor(xpdb@Data$SEX,levels=c("2","1"))
xpose.VPC(by="SEX",object=xpdb)
## End(Not run)