xpose.VPC.both {xpose4} | R Documentation |
Xpose Visual Predictive Check (VPC) for both continuous and Limit of Quantification data.
Description
Xpose Visual Predictive Check (VPC) for both continuous and Below or Above Limit of Quantification (BLQ or ALQ) data.
Usage
xpose.VPC.both(
vpc.info = "vpc_results.csv",
vpctab = dir(pattern = "^vpctab")[1],
object = NULL,
subset = NULL,
main = "Default",
main.sub = NULL,
inclZeroWRES = FALSE,
cont.logy = F,
hline = "default",
add.args.cont = list(),
add.args.cat = list(),
...
)
Arguments
vpc.info |
Name of PSN file to use. File will come from |
vpctab |
Name of vpctab file produced from PsN. |
object |
Xpose data object. |
subset |
Subset of data to look at. |
main |
Title for plot. |
main.sub |
Used for names above each plot when using multiple plots.
Should be a vector, e.g. |
inclZeroWRES |
Include WRES=0 rows in the computations for these plots? |
cont.logy |
Should the continuous plot y-axis be on the log scale? |
hline |
Horizontal line marking the limits of quantification. If they are defined, they must be a vector of values. |
add.args.cont |
Additional arguments to the continuous plot.
|
add.args.cat |
Additional arguments to the categorical plot.
|
... |
Additional arguments to both plots. |
Author(s)
Andrew C. Hooker
See Also
xpose.VPC
, xpose.VPC.categorical
.
Other PsN functions:
boot.hist()
,
bootscm.import()
,
npc.coverage()
,
randtest.hist()
,
read.npc.vpc.results()
,
read.vpctab()
,
xpose.VPC()
,
xpose.VPC.categorical()
,
xpose4-package
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Not run:
library(xpose4)
## move to the directory where results from PsN
## are found
cur.dir <- getwd()
setwd(paste(cur.dir,"/vpc_cont_LLOQ/",sep=""))
xpose.VPC()
xpose.VPC.categorical(censored=T)
xpose.VPC.both()
xpose.VPC.both(subset="DV>1.75")
xpose.VPC.both(add.args.cont=list(ylim=c(0,80)))
xpose.VPC.both(add.args.cont = list(ylim = c(0.01, 80)), xlim = c(0,
40), add.args.cat = list(ylim = c(0, 0.4)), cont.logy = T)
xpose.VPC.both(cont.logy=T)
## End(Not run)