par_cov_qq {xpose4} | R Documentation |
Plot the parameter or covariate distributions using quantile-quantile (Q-Q) plots
Description
These functions plot the parameter or covariate values stored in an Xpose data object using Q-Q plots.
Usage
cov.qq(object, onlyfirst = TRUE, main = "Default", ...)
parm.qq(object, onlyfirst = TRUE, main = "Default", ...)
ranpar.qq(object, onlyfirst = TRUE, main = "Default", ...)
Arguments
object |
An xpose.data object. |
onlyfirst |
Logical value indicating if only the first row per individual is included in the plot. |
main |
The title of the plot. If |
... |
Other arguments passed to |
Details
Each of the parameters or covariates in the Xpose data object, as specified
in object@Prefs@Xvardef$parms
, object@Prefs@Xvardef$ranpar
or
object@Prefs@Xvardef$covariates
, is evaluated in turn, creating a
stack of Q-Q plots.
A wide array of extra options controlling Q-Q plots are available. See
xpose.plot.qq
for details.
Value
Delivers a stack of Q-Q plots.
Functions
-
cov.qq()
: Covariate distributions -
parm.qq()
: parameter distributions -
ranpar.qq()
: random parameter distributions
Author(s)
Andrew Hooker & Justin Wilkins
See Also
xpose.plot.qq
, xpose.panel.qq
,
qqmath
, xpose.data-class
,
xpose.prefs-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Here we load the example xpose database
xpdb <- simpraz.xpdb
## parameter histograms
parm.qq(xpdb)
## A stack of random parameter histograms
ranpar.qq(xpdb)
## Covariate distribution, in green with red line of identity
cov.qq(xpdb, col=11, ablcol=2)