dv.preds.vs.idv {xpose4}R Documentation

Observations (DV), individual predictions (IPRED) and population predictions (IPRED) plotted against the independent variable (IDV), for Xpose 4

Description

This is a compound plot consisting of plots of observations (DV), individual predictions (IPRED), and population predictions (PRED) against the independent variable (IDV), a specific function in Xpose 4. It is a wrapper encapsulating arguments to the xpose.plot.default function.

Usage

dv.preds.vs.idv(
  object,
  ylb = "Observations/Predictions",
  layout = c(3, 1),
  smooth = TRUE,
  scales = list(),
  ...
)

Arguments

object

An xpose.data object.

ylb

A string giving the label for the y-axis. NULL if none.

layout

A list controlling the number of columns and rows in a compound plot. The default is 2 columns and 1 row.

smooth

Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE.

scales

A list to be used for the scales argument in xyplot.

...

Other arguments passed to link{xpose.plot.default}.

Details

A wide array of extra options controlling xyplots are available. See xpose.plot.default and xpose.panel.default for details.

Value

Returns a compound plot comprising plots of observations (DV), individual predictions (IPRED), and population predictions (PRED) against the independent variable (IDV).

Author(s)

E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins

See Also

dv.vs.idv, ipred.vs.idv, pred.vs.idv, xpose.plot.default, xpose.panel.default, xyplot, xpose.prefs-class, xpose.data-class

Other specific functions: absval.cwres.vs.cov.bw(), absval.cwres.vs.pred(), absval.cwres.vs.pred.by.cov(), absval.iwres.cwres.vs.ipred.pred(), absval.iwres.vs.cov.bw(), absval.iwres.vs.idv(), absval.iwres.vs.ipred(), absval.iwres.vs.ipred.by.cov(), absval.iwres.vs.pred(), absval.wres.vs.cov.bw(), absval.wres.vs.idv(), absval.wres.vs.pred(), absval.wres.vs.pred.by.cov(), absval_delta_vs_cov_model_comp, addit.gof(), autocorr.cwres(), autocorr.iwres(), autocorr.wres(), basic.gof(), basic.model.comp(), cat.dv.vs.idv.sb(), cat.pc(), cov.splom(), cwres.dist.hist(), cwres.dist.qq(), cwres.vs.cov(), cwres.vs.idv(), cwres.vs.idv.bw(), cwres.vs.pred(), cwres.vs.pred.bw(), cwres.wres.vs.idv(), cwres.wres.vs.pred(), dOFV.vs.cov(), dOFV.vs.id(), dOFV1.vs.dOFV2(), data.checkout(), dv.vs.idv(), dv.vs.ipred(), dv.vs.ipred.by.cov(), dv.vs.ipred.by.idv(), dv.vs.pred(), dv.vs.pred.by.cov(), dv.vs.pred.by.idv(), dv.vs.pred.ipred(), gof(), ind.plots(), ind.plots.cwres.hist(), ind.plots.cwres.qq(), ipred.vs.idv(), iwres.dist.hist(), iwres.dist.qq(), iwres.vs.idv(), kaplan.plot(), par_cov_hist, par_cov_qq, parm.vs.cov(), parm.vs.parm(), pred.vs.idv(), ranpar.vs.cov(), runsum(), wres.dist.hist(), wres.dist.qq(), wres.vs.idv(), wres.vs.idv.bw(), wres.vs.pred(), wres.vs.pred.bw(), xpose.VPC(), xpose.VPC.both(), xpose.VPC.categorical(), xpose4-package

Examples


## Here we load the example xpose database 
xpdb <- simpraz.xpdb

dv.preds.vs.idv(xpdb)


[Package xpose4 version 4.7.3 Index]