data.checkout {xpose4} | R Documentation |
Check through the source dataset to detect problems
Description
This function graphically "checks out" the dataset to identify errors or inconsistencies.
Usage
data.checkout(
obj = NULL,
datafile = ".ask.",
hlin = -99,
dotcol = "black",
dotpch = 16,
dotcex = 1,
idlab = "ID",
csv = NULL,
main = "Default",
...
)
Arguments
obj |
NULL or an xpose.data object. |
datafile |
A data file, suitable for import by
|
hlin |
An integer, specifying the line number on which the column headers appear. |
dotcol |
Colour for the dots in the dotplot. If obj is an xpose data object then the default is to use the same value as defined for box-and-whisker plots. |
dotpch |
Plotting character for the dots in the dotplot. If obj is an xpose data object then the default is to use the same value as defined for box-and-whisker plots. |
dotcex |
Relative scaling for the dots in the dotplot. If obj is an xpose data object then the default is to use the same value as defined for box-and-whisker plots. |
idlab |
The ID column label in the dataset. Input as a text string. |
csv |
Is the data file in CSV format (comma separated values)? If the
value is |
main |
The title to the plot. "default" means that Xpose creates a title. |
... |
Other arguments passed to |
Details
This function creates a series of dotplots
, one for each variable in
the dataset, against individual ID. Outliers and clusters may easily be
detected in this manner.
Value
A stack of dotplots.
Author(s)
Niclas Jonsson, Andrew Hooker & Justin Wilkins
See Also
dotplot
, xpose.prefs-class
,
read.table
Other data functions:
add_transformed_columns
,
change_graphical_parameters
,
change_misc_parameters
,
compute.cwres()
,
data_extract_or_assign
,
db.names()
,
export.graph.par()
,
export.variable.definitions()
,
import.graph.par()
,
import.variable.definitions()
,
make.sb.data()
,
nsim()
,
par_cov_summary
,
read.TTE.sim.data()
,
read.nm.tables()
,
read_NM_output
,
read_nm_table()
,
simprazExample()
,
tabulate.parameters()
,
xlabel()
,
xpose.data
,
xpose.print()
,
xpose4-package
,
xsubset()
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Not run:
## We expect to find the required NONMEM run, table and data files for run
## 5 in the current working directory
xpdb5 <- xpose.data(5)
data.checkout(xpdb5, datafile = "mydata.dta")
data.checkout(datafile = "mydata.dta")
## End(Not run)