cwres.vs.cov {xpose4} | R Documentation |
Conditional Weighted residuals (CWRES) plotted against covariates, for Xpose 4
Description
This creates a stack of plots of conditional weighted residuals (CWRES)
plotted against covariates, and is a specific function in Xpose 4. It is a
wrapper encapsulating arguments to the xpose.plot.default
and
xpose.plot.histogram
functions. Most of the options take their
default values from xpose.data object but may be overridden by supplying
them as arguments.
Usage
cwres.vs.cov(
object,
ylb = "CWRES",
smooth = TRUE,
type = "p",
main = "Default",
...
)
Arguments
object |
An xpose.data object. |
ylb |
A string giving the label for the y-axis. |
smooth |
A |
type |
1-character string giving the type of plot desired. The following values are possible, for details, see 'plot': '"p"' for points, '"l"' for lines, '"o"' for over-plotted points and lines, '"b"', '"c"') for (empty if '"c"') points joined by lines, '"s"' and '"S"' for stair steps and '"h"' for histogram-like vertical lines. Finally, '"n"' does not produce any points or lines. |
main |
The title of the plot. If |
... |
Other arguments passed to |
Details
Each of the covariates in the Xpose data object, as specified in
object@Prefs@Xvardef$Covariates
, is evaluated in turn, creating a
stack of plots.
Conditional weighted residuals (CWRES) require some extra steps to
calculate. See compute.cwres
for details.
A wide array of extra options controlling xyplots and histograms are
available. See xpose.plot.default
and
xpose.plot.histogram
for details.
Value
Returns a stack of xyplots and histograms of CWRES versus covariates.
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also
xpose.plot.default
,
xpose.plot.histogram
, xyplot
,
histogram
, xpose.prefs-class
,
compute.cwres
, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Here we load the example xpose database
xpdb <- simpraz.xpdb
cwres.vs.cov(xpdb)