autocorr.cwres {xpose4} | R Documentation |
Autocorrelation of conditional weighted residuals for Xpose 4
Description
This is an autocorrelation plot of conditional weighted residuals, a specific function in Xpose 4. Most of the options take their default values from xpose.data object but may be overridden by supplying them as arguments.
Usage
autocorr.cwres(
object,
type = "p",
smooth = TRUE,
ids = F,
main = "Default",
...
)
Arguments
object |
An xpose.data object. |
type |
1-character string giving the type of plot desired. The
following values are possible, for details, see |
smooth |
Logical value indicating whether a smooth should be superimposed. |
ids |
A logical value indicating whether text labels should be used as
plotting symbols (the variable used for these symbols indicated by the
|
main |
The title of the plot. If |
... |
Other arguments passed to |
Details
A wide array of extra options controlling xyplots are available. See
xpose.plot.default
for details.
Conditional weighted residuals (CWRES) require some extra steps to
calculate. See compute.cwres
for details.
Value
Returns an autocorrelation plot for conditional weighted population residuals (CWRES).
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also
xyplot
, xpose.prefs-class
,
compute.cwres
, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Not run:
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb5 <- xpose.data(5)
## End(Not run)
## Here we load the example xpose database
data(simpraz.xpdb)
xpdb <- simpraz.xpdb
## A vanilla plot
autocorr.cwres(xpdb)
## A conditioning plot
autocorr.cwres(xpdb, dilution=TRUE)
## Custom heading and axis labels
autocorr.cwres(xpdb, main="My conditioning plot", ylb="|CWRES|", xlb="PRED")
## Custom colours and symbols, IDs
autocorr.cwres(xpdb, cex=0.6, pch=3, col=1, ids=TRUE)