add_transformed_columns {xpose4} | R Documentation |
Column-transformation functions for Xpose 4
Description
These functions transform existing Xpose 4 data columns, adding new columns.
Usage
add.absval(object, listall = TRUE, classic = FALSE)
add.dichot(object, listall = TRUE, classic = FALSE)
add.exp(object, listall = TRUE, classic = FALSE)
add.log(object, listall = TRUE, classic = FALSE)
add.tad(object, classic = FALSE)
Arguments
object |
An |
listall |
A logical operator specifying whether the items in the database should be listed. |
classic |
A logical operator specifying whether the function should assume the classic menu system. This is an internal option and need never be called from the command line. |
Details
These functions may be used to create new data columns within the Xpose data object by transforming existing ones.
Value
An xpose.data
object (classic == FALSE) or null
(classic == TRUE).
Functions
-
add.absval()
: Create a column containing the absolute values of data in another column. -
add.dichot()
: Create a categorical data column based on a continuous data column -
add.exp()
: Create an exponentiated version of an existing variable -
add.log()
: Create a log transformation of an existing variable -
add.tad()
: Create a time-after-dose (TAD) data item based upon the dose and time variables in the dataset.
Author(s)
Niclas Jonsson, Justin Wilkins and Andrew Hooker
See Also
Other data functions:
change_graphical_parameters
,
change_misc_parameters
,
compute.cwres()
,
data.checkout()
,
data_extract_or_assign
,
db.names()
,
export.graph.par()
,
export.variable.definitions()
,
import.graph.par()
,
import.variable.definitions()
,
make.sb.data()
,
nsim()
,
par_cov_summary
,
read.TTE.sim.data()
,
read.nm.tables()
,
read_NM_output
,
read_nm_table()
,
simprazExample()
,
tabulate.parameters()
,
xlabel()
,
xpose.data
,
xpose.print()
,
xpose4-package
,
xsubset()
Examples
## Not run:
## xpdb5 is an Xpose data object
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb5 <- xpose.data(5)
## Create a column containing the absolute values of data in another
## column
add.absval(xpdb5)
## Create a categorical data column based on a continuous data column,
## and do not list variables
add.dichot(xpdb5, listall = FALSE)
## Create a column containing the exponentiated values of data in
## another column
add.exp(xpdb5)
## Create a column containing log-transformations of data in another
## column
add.log(xpdb5)
## Create a time-after-dose column
add.tad(xpdb5)
## End(Not run)