predict.bsplines {xhaz} | R Documentation |
Predictions of excess hazard and net Survival from a bsplines
object
Description
Function to predict excess hazard and net survival based on
an object of class bsplines
. The function allows the
predictions at several time points but not exceeding the maximum time of
follow-up from the baseline model.
Usage
## S3 method for class 'bsplines'
predict(object, new.data = NULL, times.pts = NULL, baseline = TRUE, ...)
Arguments
object |
an object of class |
new.data |
new.data where is covariates |
times.pts |
time in year scale to calculate the excess hazard. The default value is NULL. In this case, time variable must be provided in the new.data |
baseline |
default is survival baseline; put |
... |
additional arguments affecting the predictions of excess hazard and net survival |
Value
An object of class predxhaz, which is a list of data.frame. Each element of the list contains the estimates of hazard and survival at a fixed time point. The return of this function can be used to produce graphics of excess hazard or net survival, when times.pts argument is provided. This object contains:
times.pts |
the times value in year at which the excess hazard and or the net survival have been estimated |
hazard |
the excess hazard values based on the model of interest |
survival |
the net survival values based on the model of interest |
Author(s)
Juste Goungounga, Robert Darlin Mba, Nathalie Graff\'eo and Roch Giorgi
References
Goungounga JA, Touraine C, Graff\'eo N, Giorgi R; CENSUR working survival group. Correcting for misclassification and selection effects in estimating net survival in clinical trials. BMC Med Res Methodol. 2019 May 16;19(1):104. doi: 10.1186/s12874-019-0747-3. PMID: 31096911; PMCID: PMC6524224. (PubMed)
Touraine C, Graff\'eo N, Giorgi R; CENSUR working survival group. More accurate cancer-related excess mortality through correcting background mortality for extra variables. Stat Methods Med Res. 2020 Jan;29(1):122-136. doi: 10.1177/0962280218823234. Epub 2019 Jan 23. PMID: 30674229. (PubMed)
Mba RD, Goungounga JA, Graff\'eo N, Giorgi R; CENSUR working survival group. Correcting inaccurate background mortality in excess hazard models through breakpoints. BMC Med Res Methodol. 2020 Oct 29;20(1):268. doi: 10.1186/s12874-020-01139-z. PMID: 33121436; PMCID: PMC7596976. (PubMed)
See Also
xhaz
, print.bsplines
, print.constant
Examples
library("survival")
library("numDeriv")
library("survexp.fr")
library("splines")
data("dataCancer", package = "xhaz") # load the data set in the package
fit.phBS <- xhaz(
formula = Surv(obs_time_year, event) ~ ageCentre + immuno_trt,
data = dataCancer, ratetable = survexp.fr,
interval = c(0, NA, NA, max(dataCancer$obs_time_year)),
rmap = list(age = 'age', sex = 'sexx', year = 'year_date'),
baseline = "bsplines", pophaz = "classic")
print(fit.phBS)
predicted <- predict(object = fit.phBS,
new.data = dataCancer[1:10,],
times.pts = c(seq(0,10,1)),
baseline = TRUE)
#a list of predicted hazard and survival at different time points
print(predicted)
#predicted hazard and survival at time points 10 years
print(predicted[[10]])