plot.predxhaz {xhaz} | R Documentation |
plots of excess hazard and net Survival from an
predxhaz
object
Description
Function to plot excess hazard or net survival
Usage
## S3 method for class 'predxhaz'
plot(x, what = "survival", ...)
Arguments
x |
An object of class predxhaz |
what |
allow to choose between excess hazard
( |
... |
additional arguments affecting the plot function |
Value
The return of this function produce graphics of excess hazard or net survival, or time-dependent effects, when times.pts argument is provided in prediction call.
Author(s)
Juste Goungounga, Robert Darlin Mba, Nathalie Graff\'eo and Roch Giorgi
References
Goungounga JA, Touraine C, Graff\'eo N, Giorgi R; CENSUR working survival group. Correcting for misclassification and selection effects in estimating net survival in clinical trials. BMC Med Res Methodol. 2019 May 16;19(1):104. doi: 10.1186/s12874-019-0747-3. PMID: 31096911; PMCID: PMC6524224. (PubMed)
Touraine C, Graff\'eo N, Giorgi R; CENSUR working survival group. More accurate cancer-related excess mortality through correcting background mortality for extra variables. Stat Methods Med Res. 2020 Jan;29(1):122-136. doi: 10.1177/0962280218823234. Epub 2019 Jan 23. PMID: 30674229. (PubMed)
Mba RD, Goungounga JA, Graff\'eo N, Giorgi R; CENSUR working survival group. Correcting inaccurate background mortality in excess hazard models through breakpoints. BMC Med Res Methodol. 2020 Oct 29;20(1):268. doi: 10.1186/s12874-020-01139-z. PMID: 33121436; PMCID: PMC7596976. (PubMed)
Examples
data("dataCancer")
# load the data set in the package
library("survival")
library("numDeriv")
library("survexp.fr")
data("simuData", package = "xhaz") # load the data sets 'simuData'
#define the levels of variable sex
# Esteve et al. model
fit.estv1 <- xhaz(formula = Surv(time_year, status) ~ agec + race,
data = simuData, ratetable = survexp.us,
interval = c(0, NA, NA, NA, NA, NA, max(simuData$time_year)),
rmap = list(age = 'age', sex = 'sex', year = 'date'),
baseline = "constant", pophaz = "classic")
predict_est <- predict(object = fit.estv1,
new.data = simuData,
times.pts = c(seq(0, 4, 0.1)),
baseline = TRUE)
plot(predict_est, what = "survival",
xlab = "time since diagnosis (year)",
ylab = "net survival", ylim = c(0, 1))
data("dataCancer", package = "xhaz") # load the data set in the package
fit.phBS <- xhaz(
formula = Surv(obs_time_year, event) ~ ageCentre + immuno_trt,
data = dataCancer, ratetable = survexp.fr::survexp.fr,
interval = c(0, NA, NA, max(dataCancer$obs_time_year)),
rmap = list(age = 'age', sex = 'sexx', year = 'year_date'),
baseline = "bsplines", pophaz = "classic")
predict_mod1 <- predict(object = fit.phBS, new.data = dataCancer,
times.pts = c(seq(0, 10, 0.1)), baseline = FALSE)
old.par <- par(no.readonly = TRUE)
par(mfrow = c(2, 1))
plot(predict_mod1, what = "survival",
xlab = "time since diagnosis (year)",
ylab = "net survival", ylim = c(0, 1))
plot(predict_mod1, what = "hazard",
xlab = "time since diagnosis (year)",
ylab = "excess hazard")
par(old.par)